
File Operations

Programming (for biologists)

BIOL 7800

Up until now…

Stars burn a very light type of air that is packed very tight in the
middle of the star. The tiny pieces of the air join to form a slightly
heavier type of air that can't burn in the star without the middle
being much hotter and tighter.

After a long time, all the very light air in the middle is used up.
Then the star gets much hotter and tighter in the middle, so it can
burn the slightly heavier air. It also also gets much bigger and
cooler outside. But it is still so hot it will burn up any close-in
worlds.

We’ve been using text from the body of our code.

But, we often want to…

Data from a file Data to a file

Program to perform a task

File Operations (AKA File IO)

The key to file operations is open()
And, in python, we need to open() a file before we can

read from it or write to it

open() has several “forms”

Anatomy of open()

my_file = open(‘file.txt’, ‘r’)

variable open()
function

file name/path

mode

Anatomy of open()

my_file = open(‘file.txt’, ‘r’)

variable open()
function

file name/path

mode

“mode” comes in 3 flavors:
‘r’ :: read
‘w’ :: write
‘a’ :: append

open(‘file.txt’, ‘r’) open(‘file.txt’, ‘w’) open(‘file.txt’, ‘a’)

Anatomy of open()
“mode” comes in 3 flavors

read write append

For reading
lines of/entire file

non-destructive

For writing lines
to a file

destructive non-destructive

For writing lines
to end of a file

Will erase contents of
any existing file with

name of file you open !!

open(‘file.txt’, ‘r+’)

Anatomy of open()
“mode” comes in 3 flavors

read + write

For reading
lines of/entire file

non-destructive

For writing lines
to a file plus

open(‘file.txt’, ‘rb’) open(‘file.txt’, ‘wb’) open(‘file.txt’, ‘ab’)

Anatomy of open() [binary files]
“mode” can also be altered for operations on “binary” files

read write append

For reading
lines of/entire file

non-destructive

For writing lines
to a file

destructive non-destructive

For writing lines
to end of a file

(jpeg, tiff, docx, etc.)
(THIS IS MORE IMPORTANT ON WINDOWS THAN UNIX)

Character Meaning

‘r’ open for reading

‘w’ open for writing, truncating file first

‘x’ open for exclusive creation, failing if the file already exists

‘a’ open for writing, appending to the end of the file if it exists

‘b’ binary mode

‘t’ text mode (default)

‘+’ open a disk file for updating (reading and writing)

Anatomy of open()
All file modes

Reading a file
my_file = open(‘file.txt’, ‘r’)

returns a
file object

In: my_file = open(‘file.txt’, ‘r’)
In: type(my_file)
Out: _io.TextIOWrapper

Reading a file

my_file = open(‘file.txt’, ‘r’)

this is my file
i do not want it to be big
nor do i want it to be small

file.txt

Reading a file
There are several methods you can use to read contents

.read()

In: my_file = open(‘file.txt’, ‘r’)
In: my_file.read()
Out: ‘this is my file\ni do not want it to be big\nnor do i want it to be small\n’

The .read() method, reads the entire file into memory

Can use lots of RAM (when a huge file)

Reading a file
There are several methods you can use to read contents

.readline()

In: my_file = open(‘file.txt’, ‘r’)
In: my_file.readline()
Out: this is my file\n
In: my_file.readline()
Out: i do not want it to be big\n
In: my_file.readline()
Out: nor do i want it to be small\n’

The .readline() method reads the file line-by-line

Only 1 line per call (inconvenient)

Reading a file
There are several methods you can use to read contents

.readlines()

In: my_file = open(‘file.txt’, ‘r’)
In: my_file.readlines()
Out: ['this is my file\n',
 'i do not want it to be big\n',
 'nor do i want it to be small\n']

The .readlines() method, reads the file into a list, splitting
each line on the newline character to make a list entry

Can use lots of RAM (when a huge file)

Reading a file (the best way)
There are several methods you can use to read contents

In: my_file = open(‘file.txt’, ‘r’)
In: for line in my_file
 # do something with line
 print(line.strip())
Out: this is my file
Out: i do not want it to be big
Out: nor do i want it to be small

Treat the file as an iterator

we can just iterate over each line

Uses very little RAM !
Give us easy-access to entire file (line by line) !

Closing a file
In: my_file = open(‘file.txt’, ‘r’)
In: # do stuff

When we .open() a file, we need to .close() it once
we’re done using it

In: my_file.close()

This (1) helps avoid file corruption issues and (2) also helps
remove stale links to different files

Reading a file with with
but all this .open() and .close() is bothersome

We can use with to accomplish both tasks

In: with open(‘file.txt’, ‘r’) as my_file:
In: for line in my_file:
 print(line.strip())

with also closes file when we finish iterating over
its line

with helps us open file and access it using my_file

Writing a file

In: my_text = “this is my file\n
i do not want it to be big\n
nor do i want it to be small”

In: my_file = open(‘file.txt’, ‘w’)
In: my_file.write(my_text)
Out: my_file.close()

Very similar to .read() on a file object… but using .write()

open new file in write mode

use the write method to
 write a line to the file

use the .close() method to
 close the file

Writing a file
.writelines() is the writing corollary of .readlines()

In: my_lines = [“this\n”, “that\n”, “the other\n”]
In: my_file = open(‘file.txt’, ‘w’)
In: my_file.writeline(my_lines)
In: my_file.close()

A list of strings

Writing a file with with
again, all this .open() and .close() is bothersome

We can use with to accomplish both tasks

In: with open(‘file.txt’, ‘w’) as my_file:
In: my_file.write(my_text)

with also closes file when we finish iterating over
its line

with helps us open file and access it using my_file

In: my_text = “this is my file\n
i do not want it to be big\n
nor do i want it to be small”

with to read and write

In: with open(‘input.txt’, ‘r’) as my_input:
In: with open(‘output.txt’, ‘w’) as my_output:
In: for line in my_input:

 my_output.write(line)

What does this do?

this is my file
i do not want it to be big
nor do i want it to be small

input.txt

Formatting what you write
Up to now, you’ve been using the print() function

“print, something, like, this”
What I want:

print(“print, something, like, this”)
What you usually do:

print(‘ print,’ + ‘ something,’ + ‘ like,’ + ‘ this’)

Introducing format()

“print, something, like, this”
What I want:

Using the .format() string method
print('{0}, {1}, {2}, {3}'.format('print', 'something', 'like', ‘this'))

Strings in parens gets substituted to the indexed {}

Introducing format()

“print, something, like, this”
What I want:

Using the .format() string method
print('{}, {}, {}, {}'.format('print', 'something', 'like', ‘this'))

strings in parens gets substituted to their relative {}
We can leave out the index numbers and

Introducing format()

“print, something, like, this”
What I want:

Using the .format() string method
print('{}, {}, {}, {}'.format('print', 'something', 'like',))

What do you think happens above?

Introducing format()

Using the .format() string method
print('{0}, {1}, {2}, {3}, {1}’.format(‘some’, 'dogs', 'like', 'other'))

We can also repeat indexes to repeat a word…
(but we must give index position in this case)

“some dogs like other dogs”
What it prints:

Introducing format()

The % (format) operator is another way to do string substitution
But, the .format() method is much more powerful

camels = 124
print(“I have seen %d camels” % camels)

camels = 124
print(“I have seen {0} camels”.format(camels))

vs.

