
Classes and Objects 

Programming (for biologists) 

BIOL 7800



Strings
Strings are what are known as “objects”

And, as objects, strings have their own  
“methods” and “attributes”

object - a defined class of a certain type

where methods are basically functions that operate 
only on an object of the string class

and attributes are values associated with named elements 
of an object of the string class



Strings
But strings are also what are known as “objects”

And, as objects have their own “methods”

object - a defined class of a certain type

where methods are basically functions that operate 
only on an object of the string class

my_string = ‘gorilla’

my_string.upper() = ‘GORILLA’

The .upper() method
We say we “invoke” upper() on my_string.



Strings
As objects, strings have lots of methods and attributes

How do we show the methods and attributes of an object?

my_string = ‘gorilla’
dir(my_string)

[… 
‘capitalize’, 
 'casefold', 
 'center', 
 'count', 
 'encode', 
 'endswith', 
 'expandtabs', 
 'find', 
 ‘format', 
… 
]



Lists
Lists are also“objects”

object - a defined class of a certain type

where methods are basically functions that operate 
only on an object of the list class

and attributes are values associated with named elements 
of an object of the list class

And, as objects, lists have their own  
“methods” and “attributes”



Dictionary
{‘dogs’: 2, ‘cats’:3, ‘hamsters’:1}my_pets =

Dictionaries are also“objects”
object - a defined class of a certain type

where methods are basically functions that operate 
only on an object of the dict class

and attributes are values associated with named elements 
of an object of the dict class

And, as objects, dictionaries have their own  
“methods” and “attributes”



Tuple
my_tuple = (‘this’, 'is', 'my', ‘tuple’)

Tuples are also“objects”
object - a defined class of a certain type

where methods are basically functions that operate 
only on an object of the tuple class

and attributes are values associated with named elements 
of an object of the tuple class

And, as objects, tuples have their own  
“methods” and “attributes”



But what is a damn “object”?
It is a way of encapsulating a certain type or class of data

…along with attributes that make up that type of data

…and methods that operate on that type of data

(you could think of these as “metadata”)

(you could think of these as object-specific functions)



And, what is a damn “class”?
A class is essentially a user-defined object (or type)

We can create new Classes to define new types

(3, 4)

1

1 2 3

2
3
4

0 4

5
A point

How might you represent this in Python?



And, what is a damn “class”?

(3, 4)

1

1 2 3

2
3
4

0 4

5
A point

How might you represent this in Python?

x = 3 
y = 4

point = [3, 4]

point = (3, 4)

point = {‘x’:3, ‘y’:4}

}variables

list

tuple

dictionary



But there is another option…
(3, 4)

1

1 2 3

2
3
4

0 4

5

class Point(): 
    '''A class to hold point data''' 
    # other stuff to do w/ class goes below

We can define a class to represent points

class keyword class name

class docstring

class body (attributes, methods)



We can define a class to represent points
class Point(): 
    '''A class to hold point data''' 
    # other stuff to do w/ class goes below

(3, 4)

1

1 2 3

2
3
4

0 4

5

where methods are 
basically functions that 
operate only on an object of 
the Point() class

…and attributes are values 
assoc. with named elements 

of an object of the Point() 
class

This Point() class allows us to 
create Point() objects that have 

their own 
“methods” and “attributes”



$ python example.py 
Output of type(my_point):  <class '__main__.Point'>

Defining and using Point() class

define Point() class}
create a Point object 

aka "instantiate"  
a Point object

my_point object is an "instance" of the Point() class

and creating a Point() object



$ python example.py 
Output of print(my_point):  <__main__.Point object at 0x1021d8dd8>

define Point() class}
create a Point object 

aka "instantiate"  
a Point object

my_point object is an  
"instance" of the Point() class

Defining and using Point() class
and creating a Point() object



$ python example.py 
Output of dir(my_point):  ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', 
'__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', 
'__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', 
'__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__']

Where'd all  
that come  

from?

Defining and using Point() class
and creating a Point() object



$ python example.py 
Output of print(my_point):  <__main__.Point object at 0x1019d8c88> 
Output of print(my_point):  <__main__.Point object at 0x1019d8cf8> 
Output of print(my_point):  <__main__.Point object at 0x1019eada0>

instantiate several 
Point objects 

each my_point object  
is a differen5 "instance" 

of the Point() class

each instance of Point() has a diff. RAM location

Defining and using Point() class
and creating several Point() objects



Attributes
We can "assign" attributes after we create an instance of 

Point() using dot notation

$ python example.py 
x =  3 
y =  4

where attributes are values 
assoc. with named elements 

of an object of the Point() 
class

the x attribute of my_point

the y attribute of my_point



Attributes
We can "assign" attributes after we create an instance of 

Point() using dot notation

}
Now, my_point  

encapsulates our point  
values in its x and y attributes

$ python example.py 
x =  3 
y =  4



Attributes
We can "assign" attributes to different instances of the Point() class

One instance of Point()

$ python example.py 
x = 3; y = 4 
x = 100; y = 300

Another instance 
of Point()

Encapsulates the values (3, 4)

Encapsulates different  
values of (100, 300)



Objects
You can pass around an instance of the Point() object  

as you would expect

$ python example.py 
x = 3; y = 4



Rectangle Class
Let's also create a Rectangle() class

One of the tricky things about this is that  
we can specify a rectangle by:

1

1 2 3

2
3
4

0 4

5

1

1 2 3

2
3
4

0 4

5

{{
1 point

Height

Width

2 opposing points
Approach #1 Approach #2



Rectangle Class
Let's also create a Rectangle() class

We make the arbitrary choice to use Approach 1

1

1 2 3

2
3
4

0 4

5

{{
1 point

Height

Width

Approach #1



Rectangle Class

Instantiate my_rect
assign the width attribute of my_rect
assign the height attribute of my_rect
assign the corner attribute of my_rect to Point()

} assign the x and y attributes of my_rect.corner  
(which is a Point() object)



Rectangle Class

$ python example2.py 
this is dir(my_rect) ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', 
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', 
'__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', 
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'corner', 
'height', 'width']



A function can return an instance

$ python example2.py 
<__main__.Point object at 0x10181e3c8> 
2.0 3.0



This seems inefficient…
But, all of this is sort of 

cumbersome, and seems 
inefficient…

And, really, there are more 
efficient and clear ways of 

working with objects



__init__ is a "special" 
method that is called when 

an object is instantiated 

1. take control of object initialization

It takes arguments, 
which we assign to 

attributes



1. take control of object initialization

But, what's all this 
self. stuff?



1. take control of object initialization
But, what's all this self. stuff?

The first self. 
denotes that 

__init__ is a method 
of the Rectangle() 

class



1. take control of object initialization
But, what's all this self. stuff?

The second self. 
denotes that each 

variable is an 
attribute of the 

Rectangle() class



1. take control of object initialization
But, what's all this self. stuff?

The second self. 
denotes that each 

variable is an 
attribute of the 

Rectangle() class

We can also have 
normal variables 

within methods that 
are not attributes



1. take control of object initialization
We can clean 

this up by 
adding 
__init__ 

method to 
Point() class



This seems inefficient…
Let's return to our 

center finding 
exercise…

We've cleaned up 
inefficient attribute 

stuff



This seems inefficient…
Let's return to our 

center finding 
exercise…

But we still have a 
function here that 

really applies only to 
Rectangle() objects



2. take control of object methods

We can make this 
function a method of 

all Rectangle() 
objects



2. take control of object methods

And we can call that 
method whenever we 

want 
(after we instantiate the object)



2. take control of object methods

$ python example2.py 
<__main__.Point object at 0x101a19f98> 
2.0 3.0


