
Classes and Objects

Programming (for biologists)

BIOL 7800

We can define a class to represent points
class Point():
 '''A class to hold point data'''
 # other stuff to do w/ class goes below

(3, 4)

1

1 2 3

2
3
4

0 4

5

where methods are
basically functions that
operate only on an object of
the Point() class

…and attributes are values
assoc. with named elements

of an object of the Point()
class

This Point() class allows us to
create Point() objects that have

their own
“methods” and “attributes”

Rectangle Class
Let's also create a Rectangle() class

We make the arbitrary choice to use Approach 1

1

1 2 3

2
3
4

0 4

5

{{
1 point

Height

Width

Approach #1

1. take control of object initialization
We can clean

this up by
adding
__init__

method to
Point() class

This seems inefficient…
Let's return to our

center finding
exercise…

We've cleaned up
inefficient attribute

stuff

This seems inefficient…
Let's return to our

center finding
exercise…

But we still have a
function here that

really applies only to
Rectangle() objects

2. take control of object methods

We can make this
function a method of

all Rectangle()
objects

2. take control of object methods

And we can call that
method whenever we

want
(after we instantiate the object)

Another example: Time()
As far as you know*,

there is no class for
representing Time in

Python

So let's make one…

*(datetime is the standard python module for classes dealing w/ times & dates)

Printing Time()
We can create a

print_time
function to pretty
print the time of

each Time()
instance

$ python example12.py
09:45:00

Printing Time()
We can create a

print_time
function to pretty
print the time of

each
instance

$ python example12.py
09:45:00

What is a better way to implement this function?

Printing Time()
What is a better way to implement this function?

As a method of the
Time() class

Create Time()
instance

Call pretty_print()
method

Adding Time()
We want to add two time objects…

add_time() is a method
of the Time() class

$ python example12.py
09:45:00

09:45:00
10:55:00

Adding Time()
We want to add

add_time()
of the

$ python example12.py
09:45:00

09:45:00
10:55:00

Notice that this method does not change
the start instance of Time()

You might call this a "pure" method
(it does not modify object attributes)

Adding Time()
We want to add some amount of time to an object…

$ python example12.py
09:45:00

09:46:00

increment_time() is a
method of the Time()

class

Adding Time()

Adding Time()
We want to add some amount of time to an object…

$ python example12.py
09:45:00

09:46:00

increment_time()
method of the

class Notice that this method changes
the start instance of Time()

You might call this a "modifier" method
(it does modify object attributes)

Adding Time()
What's a remaining problem with both of these methods?

increment_time()

add_time()

How might we fix them?

Adding Time()

$ python example12.py
09:45:01
09:46:31

Method to convert time to seconds

Method to convert seconds to time

Method to add seconds to time

Checking Time()

$ python example12.py
09:45:01
09:46:31

Method to check our time

We can check_time after any
method that alters it

__str__ method of Time()

$ python example12.py
09:45:01
09:46:31

We have to call pretty_print to
see anything about objects of
this class

__str__ method of Time()

$ python example12.py
09:4
09:4

We have to call
see anything about objects of
this class

Wouldn't it be easier to get this information by default?

__str__ method of Time()

We convert pretty_print to the
special __str__ method, and
change print() to return.

Now, every time we simply
print() an instance of the
Time() class, we see its
"string representation"

The __str__ method returns an
objects "string representation"

$ python example12.py
09:45:01
09:46:31

__str__ method of Time()

We can make the special
__str__ method say whatever
we want

$ python example12.py
The time is: 09:45:01

__add__ method of Time()

Here, we define __add__ special
method, which let's us use the +
operator with our class

$ python example12.py
Start time is 09:45:00

End time is 11:30:00

instance 1

instance 2

instance 1 + instance 2

__add__ method of Time()

Here, we define __add__ special
method, which let's us use the +
operator with our class

instance 1

instance 2

instance 1 + instance 2

Changing the behavior of + to work with
our new Time() type is called

operator overloading.

For every operator in Python, there is
a corresponding special method.

Type-based Dispatch
Here, we use isinstance()
function to see if we are adding a
Time() object or some other
object, then we return one answer
or another based on that result.

We we can use + to add (1) another
Time() object or (2) a bunch of

seconds

Because computation is based on
argument type, this is an example of
type-based dispatch to diff methods

Inheritance
Our original Time() class Our new MyTime() class

$ python example13.py
['__add__', '__class__', …, 'add_time',
'check_time', 'hour', 'increment',
'int_to_time', 'minute', 'second',
'time_to_int']

09:45:15

Where did all this come from?

Inheritance
Our new MyTime() class

Where did all this come from?

Imported our old Time() class

Subclassed our old Time()
class, as part of our new
MyTime() class

So we get all the attributes
and methods of Time()

Inheritance
Our new MyTime() class

Let's say we don't like the way
that Time() displayed the

objects string representation
(__str__)

We can "override" that method by
defining a new __str__ method

for our MyTime() object

$ python example13.py
The hour is 09
The minutes are 45
The seconds are 15

Inheritance
Our new MyTime() class

Or, we can define entirely new
functions for our MyTime()

class.

$ python example13.py
['__add__', '__class__', …, 'add_time', 'check_time', 'hour', 'increment', 'int_to_time', 'minute',
'print_time_backwards', 'second', 'time_to_int']

15:45:09

09:45:15

Homework #13…

