
Software Testing, TDD, and
Documentation

Programming (for biologists)

BIOL 7800

Software Testing
Writing code to test logical "units" of your program

What are units here?

Software Testing
Writing code to test logical "units" of your program

unit

unit

unit

Here, functions are the logical unit
to test…

Software Testing

What are
logical "units"?

Writing code to test logical "units" of your program

unit

unit

unit

Here, methods are the logical unit
to test…

Software Testing
Writing code to test logical "units" of your program

unit

unit

unit

When we test these
units, we are doing
what is known as

"unit testing"

Software Testing
Writing code to test logical "units" of your program

Software Testing

Image: wikimedia commons

Helps you write better (more discrete) code

Helps make code more extensible

Helps you comfortably build on and refactor older code

Helps find (and fix) corner cases

Software Testing: unittest
unittest

The native python module/library for unit testing

But there are other 3rd party unit testing libraries

These often, like nose, extend unittest to make testing more efficient

Software Testing: unittest

Write a test for this unit

Write a test for this unit

Write a test for this unit

Software Testing: unittest
If we are testing lec_15.py, we

usually name the file
lec_15_test.py

This is
important

Software Testing: unittest
If we are testing

usually name the file
lec_15_test.py

This is
importantWe import unittest

and our code to test,
lec_15

Software Testing: unittest
If we are testing

usually name the file
lec_15_test.py

This is
importantWe import

and our code to test,
lec_15

We create a new class
that subclasses the
unittest.TestCase

class

This "brings in" all of
the methods from

unittest

Software Testing: unittest
If we are testing

usually name the file
lec_15_test.py

This is
importantWe import

and our code to test,
lec_15

We create a new class
that
unittest.TestCase

class

test class names
should always start

with Test

Software Testing: unittest

Normally, we would lay
out our skeleton test

units

Each is a new method
of our TestLec15 class

These methods are
also prefixed with test_

And, method names
are usually equal to the
functions we're testing

Software Testing: unittest

Normally, we would include an
ifmain statement.

But, what happens if we include
ifmain and run lec_15_test.py?

Software Testing: unittest

$ python lec_15_test.py

Traceback (most recent call last):
 File "lec_15_test.py", line 18, in
<module>
 main()
NameError: name 'main' is not defined

: (

Why?

Software Testing: unittest

With unittests, we run the
unittest.main() method

Software Testing: unittest

$ python lec_15_test.py
...
--
Ran 3 tests in 0.000s

OK

Output showing
three tests running

successfully

unittest.main() gives you all this pretty goodness

Software Testing: unittest

Output showing
three tests running

successfully

Why do tests pass?
They're not doing anything…

Software Testing: unittest

Output showing
three tests running

successfully

Why do tests pass?

Basically, tests have no
explicit content yet, so

they pass by default

Software Testing: unittest

Run our function
Define what we

expect
Test obs v. expected

assertEqual method of
unittest.testcase class

$ python lec_15_test.py
...
--
Ran 3 tests in 0.000s

OK

Software Testing: unittest
What happens when

a test fails?

Will be wrong!!

..F
==
FAIL: test_reverse (__main__.TestLec15)
--
Traceback (most recent call last):
 File "lec_15_test.py", line 11, in test_reverse
 self.assertEqual(observed, expected)
AssertionError: 'god' != 'wrong'
- god
+ wrong
--
Ran 3 tests in 0.001s

FAILED (failures=1)

Software Testing: unittest
What happens when

a test fails?

Will be wrong!!

..F
==
FAIL: test_reverse (__main__.TestLec15)
--
Traceback (most recent call last):
 File "lec_15_test.py", line 11, in test_reverse
 self.assertEqual(observed, expected)

Why did this test run 3rd?

Software Testing: unittest

$ python lec_15_test.py
...
--
Ran 3 tests in 0.000s

OK

Fill in rest of
tests…

Success!!

Software Testing
Ok, great. But why?

Image: wikimedia commons

Helps you write better (more discrete) code

Helps make code more extensible

Helps you comfortably build on and refactor older code

Helps find (and fix) corner cases

smaller units are easier to rest (and re-use)

tests ensure units operate as expected in different contexts

tests often identify potential problems before they become problems

tests often identify potential problems before they become problems

Software Testing: unittest

Let's say we want to add code to
deal with num and pow values
that are strings and not integers

Helps you comfortably build on and refactor older code

Software Testing: unittest
unit test allows us to know

those additions did not change
our original intent…

$ python lec_15_test.py
...
--
Ran 3 tests in 0.000s

OK

Helps you comfortably build on and refactor older code

Software Testing: unittest
unit test also allows us to test

new additions to code

$ python lec_15_test.py
...
--
Ran 3 tests in 0.000s

OK

Helps you comfortably build on and refactor older code

Software Testing: unittest
Often, we want to keep our unit
tests as smaller discrete units

(easier to tell what is causing a problem)

$ python lec_15_test.py
….
--
Ran 3 tests in 0.000s
OK

Helps you comfortably build on and refactor older code

Software Testing: unittest

We can also
organize unit

tests as a class
per function

Helps you comfortably build on and refactor older code

Software Testing: unittest

We can also
organize unit

tests as a class
per function

Helps you comfortably build on and refactor older code

$ python lec_15_test.py -v

test_power_int (__main__.TestLec15Power) ... ok
test_power_string (__main__.TestLec15Power) ... ok
test_reverse (__main__.TestLec15Reverse) ... ok
test_my_sum (__main__.TestLec15Sum) ... ok

--
Ran 4 tests in 0.000s

OK

Running tests in verbose
(-v/--verbose) mode

TDD

Test Driven Development

Test Driven Development
Is a method or a mode of software development

Based on this idea of
"testing" your code

And you build your new
code base from tests of

"units" of your code

Test Driven Development
Is a

Each new method or function starts
with a test case1.

Write the function with minimal code
to pass test(s)3.
Run test(s). Ensure new test passes.4.

Run test(s). Ensure new test fails.2.

Refactor (and re-run tests)5.

Test Driven Development
Is a

Each new method or function starts
with a test case1.
This helps code author focus on

a function's requirements

and define what code needs to do

Test Driven Development
Is a

This ensures test is functioning,
and that failure is only in the new code

Run test(s). Ensure new test fails.2.

Test Driven Development
Is a

We need to implement the new function

Write the function with minimal code
to pass test(s)3.
Run test(s). Ensure new test passes.4.

until we pass the test(s), refactoring code as we go
(this is usually a rinse-and-repeat sort of operation)

Refactor (and re-run tests)5.

Test Driven Development
Is a

Makes code author think about
code (setup, organization, etc.) before writing it

And the difference from strict unit tests

Is that unit tests are written after writing functions
to ensure code functions as expected

TDD

unittests

TDDunittests

Software Testing

versus

Regardless of your choice, unit testing and TDD greatly
increase the

reliability repeatability usability extensibility

Of your code

Image:

And, when starting a software project, it's always easier to
start with tests than it is to go back later….

http://wikipedia.org

Software Testing
github

Allows you to run
automated software tests

after any commit

using travis-ci

Software Testing

using travis-ci

Automatically tests code
when it changes

(on commit)

Software Testing

using travis-ci

Automatically tests code
when it changes

(on commit)

Free for open-source projects

Documentation

One of the most under-appreciated and under-valued
aspects of a good software package

Good documentation can make or break
your application

(and determine whether you ever have any users)

Documentation
github

README.md

At top-level of a repository
offers a nice, easy way to

quickly document a smaller
program or package.

These README.md documents
are markdown formatted

Documentation
These README.md documents

are markdown formatted

Documentation
e.g. seqtk

Documentation
Read The Docs

Uses a docs directory in
your repository

Automatically rebuilds
documentation when it

changes

For larger programs and
packages

Documentation
Read The Docs

Gives you a really nice HTML
& pdf version of your docs,

available online

Free for open-source projects

