Software Iesting, TDD, and
Documentation

Programming (for biologists)

BIOL 7800



doftware lesting

Writing code to test logical "units" of your program

What are units here”

def reverse(my_string):
return my_string[::-1]

def my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

def power(num, power):
return numxxpower

def main():
my_string = 'able was i ere i saw elba
rev_my_string = reverse(my_string)
print(rev_my_string)
my_list = [2, 4, 6, 8]
sum_my_list = my_sum(my_list)
print(sum_my_list)
my_power = power(20, 20)



doftware lesting

Writing code to test logical "units" of your program

5 example14.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

examplel4.py

def

def

def

def

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_1list)

power(num, power):
return numxkpower

main():

my_string = 'able was i ere i saw elba’
rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_Llist = my_sum(my_1list)
print(sum_my_1list)

my_power = power(20, 20)

+<—— unit

+<—— unit

«— Uunit

Here, functions are the logical unit
to test...



1

doftware lesting

Writing code to test logical "units" of your program

® example105-amie-s.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

° example105-amie-s.py

class WOrdCount()ﬂ
'''"Counts the words of a file'''

def

def

def

def

__init__(self, file_name):
'''Requisite attributes'''
self.file_name = file_name
self.file_path = os.path.abspath(file_name)
self.master_word_tuple = self.construct_master()
self.unique_words = set(self.master_word_tuple)

__str__(self):
return "{}:\n words'.format(
self.file_path)

construct_master(self):
''*'Construct master list of all words in file
master_list = []

with open(self.file_name, 'r') as f:
for line in f:
word_list = self.process_line(line)
master_list += (word for word in word_list)
return tuple(master_list)

process_line(self, strng):

Parse a string by spaces into a list of words

strng = strng.lower().replace('\r\n', ' ')
strng = strng.replace(' ', ' ').replace("’ ', ' ").replace('-",
new_strng = "'

for character in strng:
if character.isalpha() or character ==
new_strng += character
list_of_words = new_strng.split(' ')
return list_of_words

What are
logical "units"?



doftware lesting

Writing code to test logical "units" of your program

® example105-amie-s.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

° example105-amie-s.py

1 class WOrdCount()ﬂ
'''"Counts the words of a file'''

[ J
def __init_ (self, file_name): 4— " ]n 1t
'''Requisite attributes'''

self.file_name = file_name

o self.file_path = os.path.abspath(file_name)
self.master_word_tuple = self.construct_master()
self.unique_words = set(self.master_word_tuple)

def __str_ (self):
return "{}:\n words'.format(
self.file_path)

°
def construct_master(self): 4_ unlt
''*'"Construct master list of all words in file'''

master_list = []

with open(self.file_name, 'r') as f:
for line in f:
word_list = self.process_line(line)
master_list += (word for word in word_list)
return tuple(master_list)

°
def process_line(self, strng): 4— | I l llt

Parse a string by spaces into a list of words

strng.lower().replace('\r\n', ' ')

strng.replace("’ : ').replace("’ ', ' ").replace('-"', ' ")

strng
strng

o haraceer in st Here, methods are the logical unit

if character.isalpha() or character == ' ':

new_strng += character
list_of_words = new_strng.split(' ') O eS " a o

return list_of_words



doftware lesting

Writing code to test logical "units" of your program

® example105-amie-s.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

° example105-amie-s.py

1 class WordCount():|
'''"Counts the words of a file'''

def

def

def

def

[ )
«— nit

'''Requisite attributes'''
self.file_name = file_name
self.file_path = os.path.abspath(file_name)
self.master_word_tuple = self.construct_master()
self.unique_words = set(self.master_word_tuple)
_str_se1n When we test these
return "{}:\n words'.format(
self.file_path) . .
.. units, we are doing
construct_master(self): 4_ '] lnlt
'"'*'"Construct master list of all words in file''' w .
S what i1Is known as
with open(self.file_name, 'r') as f: o o
"unit testing"
word_list = self.process_line(line)
master_list += (word for word in word_list)
return tuple(master_list)
o
process_line(self, strng): 4_ 'l 1n1t

Parse a string by spaces into a list of words

strng = strng.lower().replace('\r\n', ' ')
strng = strng.replace(' ', ' ').replace("’ ', ' ").replace('-', ' ')
new_strng = "'

for character in strng:
if character.isalpha() or character == ' ':
new_strng += character
list_of_words = new_strng.split(' ')
return list_of_words



Software lesting

Helps you write better (more discrete) code
Helps make code more extensible
Helps find (and fix) corner cases

Helps you comfortably build on and refactor older code

IMage: wikimedia commons



unittest
The native python module/library for unit testing

Software Testing: unittest

But there are other 3rd party unit testing libraries

pytest: helps you write b X

c pytest.org/latest/ ® q. P %

i apps [\ Aitmetric it |]|S integrated Taxonom (i) LSU Courses [] Google Docs @ Hangout () BIOL 7800 (%) pinboard

Want to help improve pytest? Please contribute to or join our upcoming sprint in June 2016!

pytest-2.9.0 »

pytest: helps you write better programs

a mature full-featured Python testing tool

runs on Posix/Windows, Python 2.6-3.5, PyPy and (possibly still) Jython-2.5.1
free and open source software, distributed under the terms of the MIT license
well tested with more than a thousand tests against itself

strict backward compatibility policy for safe pytest upgrades
comprehensive online and PDF documentation

many third party plugins and builtin helpers,

used in many s j

comes with man

®  [ENote to Users — nose 1.5 x

(& https://nose.readthedocs.org/en/latest/

i apps  [9) Atmetricitt |]| Integrated Taxonom @) LSU Courses [ Google Docs @ Hangout

nose

is nicer testing for python

nose extends unittest to make testing easier.

Note to Users
Nose has been in maintenance mode for the past several years and will like e without a new
person/team to take over maintainership. New projects should consider usin, 2, py.test, or just
plain unittest/unittest2.

Installation and quick start

On most UNIX-like systems, you'll probably need to run these commands as root or using sudo.
Install nose using setuptools/distribute:

easy install nose
Or pip:

pip install nose
Or, if you don't have setuptools/distribute installed, use the download link at right to download the
source package, and install it in the normal fashion: Ungzip and untar the source package, cd to the

new directory, and:

python setup.py install

QP ®

() BioL7800 [ pinboard

Table Of Contents
Note to Users
Installation and quick start
Python3
Next topic
Testing with nose
This Page
Show Source
Download

Current version: 1.3.7

TIP list
= The Testing In Python list
features wide-ranging
discussions of all topics of
interest to python testers.

Tracker

Report bugs, request features, wik
the wiki, browse source.

Other links _
pytest

setuptools

These often, like nose, extend unittest to make testing more efficient



Software Testing: unittest

I example14.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

examplel4.py

def reverse(my_string): 4_ WPit;e a, teSt fOP this U.Ilit

return my_string[::-1]

def my_sun(my_list): <+— Write a test for this unit

if not isinstance(my_1list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

def power(num, power): <+— Write a test for this unit

return numxkxpower

def main():
my_string = 'able was i ere i saw elba’
rev_my_string = reverse(my_string)
print(rev_my_string)
my_list = [2, 4, 6, 8]
sum_my_Llist = my_sum(my_list)
print(sum_my_list)
my_power = power(20, 20)
print(my_power)



Software Testing: unittest

4¢— |f we are testing lec_15.py, we
usually name the file
lec_15_test.py

import unittest

import lec_15 \Th|8 iS

class TestLecl5(unittest.TestCase): 1M por’[an’[
pass

)



Software Testing: unittest

import unittest

import lec_15 “ . )
5 ~ We import unittest
clas;al'csestLeCIS(unlttest.TestCase): and our COde tO teSt,

lec_15



Software Testing: unittest

import lec_15

class TestLecl5(unittest.TestCase):

—We create a new class
that subclasses the
unittest.TestCase

class

This "brings in" all of
the methods from
unittest



Software Testing: unittest

It we are testing
usually name the file

import unittest

import lec_15 : Th|8 iS
5 We import \

class TestLecl5(unittest.TestCase):
pass

and our code to test,

We create a new class
that

class

test
should always start

with Test



Software Testing: unittest

)] lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def

def

def

def

if __name__ ==

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

power (num, power):
return numxxpower

main():

my_string = 'able was i ere i saw elba'

rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_Llist = my_sum(my_list)
print(sum_my_list)

my_power = power(20, 20)
print(my_power)

__main__":
main()

16

lec_15_test.py

lec_15_test.py

import unittest
import lec_15

class TestLec15(unittest.TestCase):

def test_reverse(self): h Norma”y We WOUld |ay
pass
out our skeleton test

def test_my_sum(self):
pass

units

Each is a new method
of our TestLecl5 class

def test_power(self):
pass

These methods are
also prefixed with test_

And, method names
are usually equal to the
functions we're testing



Software Testing: unittest

)] lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def

def

def

def

if __name__ == '_main__"':

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

power (num, power):
return numxxpower

main():

my_string = 'able was i ere i saw elba'
rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_Llist = my_sum(my_list)
print(sum_my_list)

my_power = power(20, 20)
print(my_power)

main()

11

lec_15_test.py

lec_15_test.py

import unittest
import lec_15

class TestLec15(unittest.TestCase):

def test_reverse(self):
pass

def test_my_sum(self)ﬂ
pass

def test_power(self):
pass

if _name__ == '__main__"':

main()

Normally, we would include an
ifmain statement.

But, what happens if we include
ifmain and run lec_15_test.py”



Software Testing: unittest

)] lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def

def

def

def

if __name__ == '_main__"':

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

power (num, power):
return numxxpower

main():

my_string = 'able was i ere i saw elba'
rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_Llist = my_sum(my_list)
print(sum_my_list)

my_power = power(20, 20)
print(my_power)

main()

lec_15_test.py

lec_15_test.py

import unittest
import lec_15

class TestLec15(unittest.TestCase):

def test_reverse(self):
pass

11 def test_my_sum(self)ﬂ
pass

def test_power(self):
pass o o

if _name__ == '__main__"': /’!--\\\
main()

$ python lec_15_test.py

Traceback (most recent call last): /
File "lec_15_test.py", line 18, in
<module>
main()
NameError: name 'main' is not defined



Software Testing: unittest

) lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def reverse(my_string):
return my_string[::-1]

def my_sum(my_Tlist):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

def power(num, power):
return numxxpower

def main():
my_string = 'able was i ere i saw elba'
rev_my_string = reverse(my_string)
print(rev_my_string)
my_list = [2, 4, 6, 8]
sum_my_Llist = my_sum(my_list)
print(sum_my_list)
my_power = power(20, 20)
print(my_power)

if __name__ == '_main__"':
main()

lec_15_test.py

lec_15_test.py

import unittest
import lec_15

class TestLec15(unittest.TestCase):

def test_reverse(self):
pass

def test_my_sum(self):
pass

def test_power(self):

pass
if _name__ == '__main__"':
18 unittest.mainiﬂ

With unittests, we run the
unittest.main() method



Software Testing: unittest

)] lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def

def

def

def

if

__name__ ==

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

power (num, power):
return numxxpower

main():

my_string = 'able was i ere i saw elba'
rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_Llist = my_sum(my_list)
print(sum_my_list)

my_power = power(20, 20)
print(my_power)

__main__
main()

lec_15_test.py

lec_15_test.py

import unittest
import lec_15

class TestLec15(unittest.TestCase):

\ Output showing
/three tests running

successfully

def test_reverse(self):
pass

def test_my_sum(self):
pass

def test_power(self):

pass
if _name__ == '__main__"':
18 unittest.mainiﬂ

$ python lec_15_test.py

Ran & tests in 0.000s

OK

unittest.main() gives you all this pretty goodness



Software Testing: unittest

)] lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def

def

def

def

if

__name__ ==

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

power (num, power):
return numxxpower

main():

my_string = 'able was i ere i saw elba'
rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_Llist = my_sum(my_list)
print(sum_my_list)

my_power = power(20, 20)
print(my_power)

__main__
main()

lec_15_test.py

lec_15_test.py

import unittest
import lec_15

class TestLec15(unittest.TestCase):

if
18

def test_reverse(self):
pass

\ Output showing
/three tests running

successfully

def test_my_sum(self):
pass

def test_power(self):

pass
__name__ == '__main__"':
unittest.mainiﬂ

Why do tests pass?
They're not doing anything...



Software Testing: unittest

)] lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def

def

def

def

if

__name__ ==

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

power (num, power):
return numxxpower

main():

my_string = 'able was i ere i saw elba'
rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_Llist = my_sum(my_list)
print(sum_my_list)

my_power = power(20, 20)
print(my_power)

__main__
main()

lec_15_test.py

lec_15_test.py
import unittest
import lec_15

class TestLec15(unittest.TestCase):

\ Output showing
/three tests running

successfully

def test reverse(self):
pass

def test_my_sum(self):
pass

def test_power(self):

pass
if _name__ == '__main__"':
18 unittest.mainiﬂ

Why do tests pass?

Basically, tests have no
explicit content yet, so
they pass by default



Software Testing: unittest

)] lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def reverse(my_string):
return my_string[::-1]

def my_sum(my_Tlist):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

def power(num, power):
return numxxpower

def main():
my_string = 'able was i ere i saw elba'
rev_my_string = reverse(my_string)
print(rev_my_string)
my_list = [2, 4, 6, 8]
sum_my_Llist = my_sum(my_list)
print(sum_my_list)
my_power = power(20, 20)
print(my_power)

if __name__ == '_main__"':
main()

lec_15_test.py

lec_15_test.py

import unittest
import lec_15

class TestLecl5(unittest.TestCase):
def test_reverse(self): &« Run our fUﬂCtIOn
observed = lec_15.reverse('dog"')
expected = 'god'
self.assertEqual(observed, expected)

Define what we
expect

def test_my_sum(self): Test obs v. expected

pass

def test_power(self):

bass assertEqual method of
18 unittest.testcase class

if _name__ == '_main__"':
unittest.main()

$ python lec_15_test.py

Ran 3 tests in 0.000s

OK



Software Testing: unittest

0 lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def

def

def

def

if __name__ == '_main__"':

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

power(num, power):
return numxxpower

main():

my_string = 'able was i ere i saw elba'
rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_Llist = my_sum(my_list)
print(sum_my_list)

my_power = power(20, 20)
print(my_power)

main()

lec_15_test.py

lec_15_test.py

What happens when
import unittes .
imgort lec_;s t a teSt fa“S?

class TestLecl5(unittest.TestCase):

def test_reverse(self):
observed = lec_15.reverse('dog"')
expected = 'wrong'
self.assertEqual(observed, expected)

Traceback (most recent call last):
File "lec_15_test.py’, line 11, in test_reverse
self.assertEqual(observed, expected)
AssertionError: 'god’ = 'wrong'
- god
+ wrong

Ran 3 tests in 0.001s

FAILED (failures=1)



Software Testing: unittest

) lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp D 8 lec_15_test.py

lec_15.py lec_15_test.py

import unittest
def reverse(my_string): import lec_15
return my_string[::-1]
class TestLecl5(unittest.TestCase):

def my_sum(my_list): def test_reverse(self):
if not isinstance(my_list, list): observed = lec_15.reverse('dog')
raise IOError("Must input a list") expected = 'wrong'
else: self.assertEqual(observed, expected)

return sum(my_list)
def test_my_sum(self):

pass
def power(num, power):
return numxkpower def test_power(self):
pass
def main(): if __name__ == '__main__"':
my_string = 'able was i ere i saw elba' unittest.main()

rev_my_string = reverse(my_string) 21 |

print(rev_my_string)

my_list = [2, 4, 6, 8] .F < Why did this test run 3rd?
print(sum_my_list)

my_power = power(20, 20)
print(my_power)

Traceback (most recent call last):
File "lec_15_test.py’, line 11, in test_reverse
self.assertEqual(observed, expected)

if __name__ == '_main__"':
main()



Software Testing: unittest

) ® |lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp ] lec_15_test.py

lec_15.py lec_15_test.py

import unittest

def reverse(my_string): import lec_15

return my_string[::-1]
class TestLecl5(unittest.TestCase):

def my_sum(my_list): def test_reverse(self):
if not isinstance(my_list, list): observed = lec_15.reverse('dog"')
raise IOError("Must input a list") expected = ‘god’
else: self.assertEqual(observed, expected)

return sum(my_list)
def test_my_sum(self):

observed = lec_15.my_sum([1, 2, 3]) FI" In reSt Of

def power(num, power): self.assertEqual(observed, 6) t(;f;t!;

return numkxpower
def test_power(self):

observed = lec_15.power(2, 2)

def main(): self.assertEqual(observed, 4)
my_string = 'able was i ere i saw elba’
rev_my_string = reverse(my_string) if __name__ == '__main__":
print(rev_my_string) unittest.main()

my_list = [2, 4, 6, 8] “ $python lec_15_test.py

sum_my_Llist = my_sum(my_list)
print(sum_my_Tlist) ces
my_power = power(20, 20)
print(my_power)

Ran 3 tests in 0.000s Success!!

if __name__ == '_main__"':

main() ()]3:



Software lesting

Helps you write better (more discrete) code

Helps make code more extensible
tests ensure units operate as expected in different contexts

Helps find (and fix) corner cases
tests often identify potential problems before they become problems

Helps you comfortably build on and refactor older code
tests often identify potential problems before they become problems

IMage: wikimedia commons



Software Testing: unittest

Helps you comfortably build on and refactor older code

O lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def

def

def

def

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

( | Let's say we want to add code to
powerinum, power).: .
it sinstonce(nun, 510 4= deg| with num and pow values

num = int(num)
e T that are strings and not integers
return numskpower

main():

my_string = 'able was i ere i saw elba'
rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_list = my_sum(my_list)
print(sum_my_Tlist)



Software Testing: unittest

Helps you comfortably bu:ld on and refactor older code

) W lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp lec_15_test.py
lec_15.py lec_15_test.py

unit test allows us to know
OIS (A those additions did not change

def reverse(my_string): import lec_15

return my_string[::-1] our original intent...

class TestLecl5(unittest.TestCase):

def my_sum(my_1list): def test_reverse(self):
if not isinstance(my_list, list): observed = lec_15.reverse('dog"')
raise IOError("Must input a list") expected = "god’
else: self.assertEqual(observed, expgcted)

return sum(my_list)
def test_my_sum(self):

observed = lec_15.my_sum([Z, 2, 31)

def power(num, power): self.assertEqual(observed) 6)
if isinstance(num, str):
num = int(num) def test_power(self):
if isinstance(power, str): observed = lec_15.power(2, 2)
power = int(power) self.assertEqual(observed, 4)

return numxkpower
1

if _name__ == '__main__
unittest.main()

def main(): 23

my_string = 'able was i ere i saw elba’ $ py‘t,hon 190_15_test.py

rev_my_string = reverse(my_string)

print(rev_my_string) boe
my_list = [2, 4, 6, 8]
sum_my_list = my_sum(my_list) SeE A et O OOOS

print(sum_my_list)
my_power = power(20, 20)

print(my_power)
32 | OK



Software Testing: unittest

Helps you comfortably build on and refactor older code

) W lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15_test.py

lec_15.py lec_15_test.py

. . unit test also allows us to test
import unittest N
def reverse(my_string): import lec_15 new additions to code

return my_string[::-1]
class TestLecl5(unittest.TestCase):

def my_sum(my_list): def test_reverse(self):
if not isinstance(my_list, list): observed = lec_15.reverse('dog")
raise IOError("Must input a list") expected = "god’
else: self.assertEqual(observed, expgcted)

return sum(my_list)
def test_my_sum(self):

observed = lec_15.my_sum([Z, 2, 31)

def power(num, power): self.assertEqual(observed) 6)
if isinstance(num, str):
num = int(num) def test_power(self):
if isinstance(power, str): observed = lec_15.power(2, 2)
power = int(power) self.assertEqual(observed, 4)
return numxkxpower observed = lec_15.power('2', '2")

self.assertEqual(observed, 4)

def main(): if __name__ == '_main__":
my_string = 'able was i ere i saw elba' unittest.main()
rev_my_string = reverse(my_string) 25
print(rev_my_string) $ python lec_15_test.py

my_list = [2, 4, 6, 8]

sum_my_Tlist = my_sum(my_Tlist) e
print(sum_my_list) Ran 3 tests in 0.000s

my_power = power(20, 20)

print(my_power)

32 | OK



32

Software Testing: unittest

Helps you comfortably build on and refactor older code

) W lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def

def

def

def

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

power (num, power):

if isinstance(num, str):
num = int(num)

if isinstance(power, str):
power = int(power)

return numxkpower

main():

my_string = 'able was i ere i saw elba'
rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_1list = my_sum(my_1list)
print(sum_my_list)

my_power = power(20, 20)
print(my_power)

lec_15_test.py

lec_15_test.py

Often, we want to keep our unit

import unittest tests as smaller discrete units
import lec_15 . : :
(easier to tell what is causing a problem)

class TestLecl5(unittest.TestCase):

def test_reverse(self):
observed = lec_15.reverse('dog"')
expected = 'god'
self.assertEqual(observed, expgct

def test_my_sum(self):
observed = lec_15.my_sum( [
self.assertEqual(observed

def test_power_int(self):
observed = lec_15.power(2, 2)
self.assertEqual(observed, 4)

def test_power_string(self):
observed = lec_15.power('2', '2')
self.assertEqual(observed, 4)

if __name__ == '_main__"':
unittest.main()

’ $ python lec_15_test.py

Ran 3 tests in 0.000s
OK



32

Software Testing: unittest

Helps you comfortably build on and refactor older code

) W lec_15.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

lec_15.py

def

def

def

def

reverse(my_string):
return my_string[::-1]

my_sum(my_1list):
if not isinstance(my_list, list):
raise IOError("Must input a list")
else:
return sum(my_list)

power (num, power):

if isinstance(num, str):
num = int(num)

if isinstance(power, str):
power = int(power)

return numxkpower

main():

my_string = 'able was i ere i saw elba'

rev_my_string = reverse(my_string)
print(rev_my_string)

my_list = [2, 4, 6, 8]

sum_my_1list = my_sum(my_1list)
print(sum_my_list)

my_power = power(20, 20)
print(my_power)

lec_15_test.py

lec_15_test.py

import unittest

import lec_15 We can also
organize unit
tests as a class
per function

class TestLecl5Reverse(unittest.TestCase):

def test_reverse(self):
observed = lec_15.reverse('dog')
expected = 'god'
self.assertEqual(observed, expefte

13
class TestLec15Sum(unittest.TestCa

def test_my_sum(self):
observed = lec_15.my_sum([1, 2,
self.assertEqual(observed, 6)

class TestLecl5Power(unittest.TestCase):
def test_power_int(self):
observed = lec_15.power(2, 2)
self.assertEqual(observed, 4)

def test_power_string(self):
observed = lec_15.power('2"', '2')
self.assertEqual(observed, 4)
if __name__ == '__main__
unittest.main()



Software Testing: unittest

Helps you comfortably build on and refactor older code

lec_15_test.py

lec_15_test.py

import unittest

import lec_15 V\/e can a|SO
organize unit
tests as a class
per function

class TestLecl5Reverse(unittest.TestCase):

def test_reverse(self):
observed = lec_15.reverse('dog')
expected = 'god'
self.assertEqual(observed, expefted

Running tests in verbose
(-v/--verbose) mode

13
class TestLec15Sum(unittest.TestCasg):

def test_my_sum(self):
observed = lec_15.my_sum([1, 2,
self.assertEqual(observed, 6)

1) $ python lec_15_test.py -v

test_power_int (__main__ .TestLecl5Power) ... ok
test_power_string (_ _main__ .TestLecl5Power) ... ok
class TestLecl5Power(unittest.TestCase): test_reverse (_main_.TestLeC ]_5Revepse) ..ok

def test_power_int(self): test_my_sum (__main__.TestLecl5Sum) ... ok
observed = lec_15.power(2, 2)

self.assertEqual(observed, 4)

Ran 4 tests in 0.000s

def test_power_string(self):
observed = lec_15.power('2', '2')
self.assertEqual(observed, 4)

OK

if __name__ == '_main__"':
unittest.main()



1DD
Test Driven Development

A \J
¢ \, \
>3 >
Y
- \\\

““.,-\~\~
&



Test Driven Development

s a method or a mode of software development

= example14.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

Based on this idea of
e e ) "testing" your code

def my_sum(my_list):
if not isinstance(my_list, list):

GISGr:*aise IOError("Must input a list") And yOu bu”d your neW
return sum(my_1list) COde base from teStS Of
def power(num, power): "unj,tS" Of your COde

return numxkpower

def main():
my_string = 'able was i ere i saw elba’
rev_my_string = reverse(my_string)
print(rev_my_string)
my_list = [2, 4, 6, 8]
sum_my_list = my_sum(my_1list)
print(sum_my_1list)
my_power = power(20, 20)



lest Driven Development

1 Each new method or function starts
e With a test case

2. Run test(s). Ensure new test

Write the function with minimal code
to pass test(s)

4. Run test(s). Ensure new test passes.

5 . Refactor (and re-run tests)



Test Driven Development

IS a

Each new method or function starts
e With a test case

This helps code author focus on
a function's requirements

and define what code needs to do



Test Driven Development

IS a

Run test(s). Ensure new test

This ensures test is functioning,
and that IS only In the new code



lest Driven Development

Write the function with minimal code
to pass test(s)

4. Run test(s). Ensure new test passes.
5 . Refactor (and re-run tests)

We need to implement the new function
until we pass the test(s), refactoring code as we go

(this is usually a rinse-and-repeat sort of operation)



lest Driven Development

TDD

Makes code author think about
code (setup, organization, etc.) before writing it

And the difference from strict unit tests

unittests

|s that unit tests are written after writing functions
to ensure code functions as expected




Software Testing

unittests| versus TDD

Regardless of your choice, unit testing and TDD greatly
iIncrease the

reliability| repeatability usability extensibility

Of your code



And, when starting a software project, it's
start with tests than it is to go back later....

o


http://wikipedia.org

Software Testing

® ® &2 Travis Cl - Test and Deplo. %

(& https://travis-ci.org

&=
% Apps  [7 Altmetricit! |[|§ Integrated Taxonom (i) LSU Courses [5] Google Docs @ Hangout () BIOL7800 [3 pinboard P
Blog  Status  Help g I l I I l I .b

Test and Deploy with Contidence Allows you to run
Easily sync your GitHub projects with Travis Cl and you’ll be testing your code in minutes! automated Software teStS

after any commit

<+— using travis-ci

Current

master a
You'll
You'll be

X= Remove Log J= Download Log

Using worker: worker-linux-docker-f0db6dl9.prod.travis-ci.org:travis-linux-8 [ ]
Build system information system_info

$ git clone --depth=50 --branch=sf-scenarios git://github.com/travis-ci/travis-github-sync.git git.checkout
Starting PostgreSQL v9.3 postgresql

This job is running on container-based infrastructure, which does not allow use of 'sudo’, setuid and setguid
executables.
If you require sudo, add 'sudo: required' to your .travis.yml

The home of open source testing

Over 200k open source projects and 126k users are testing on Travis Cl.




Software Testing

® © ® | & Travis Cl - Test and Deplo, x 2

(- (& https://travis-ci.org (0] QJ P %

% Apps [ Altmetricit! |]|5 Integrated Taxonor LSU Courses [5] Google Docs @ Hangout () BIOL 7800 [ pinboard

® ® 0 faircloth-lab/illumiprocess: X -

L (& GitHub, Inc. [US] https://github.com/faircloth-lab/illumiprocessor k4R O) qj P %
i* Apps [ Aitmetricit! |[|] Integrated Taxonon: LSU Courses 5] Google Docs @ Hangout ) BIOL 7800 [ pinboard

Blog  Status  Help

O This repository Pull requests Issues Gist A. +- ' v

Test and Deploy with Confidence

Easily sync your GitHub projects with Travis Cl and you’ll be testing your code in minutes!

faircloth-lab / illumiprocessor ®@Watch~ 6  Star 8 YFork 5

<>Code Issues 3 Pull requests 1 Wiki Pulse Graphs Settings
pre-process illumina reads http://illumiprocessor.readthedocs.org/ — Edit

{p 116 commits I’ 2 branches 2 10 releases 1 contributor

Branch: master v [T New file Upload files Findfile ~SSH~ git@github.com:faircloth- & ([F)  Download ZIP green-eggs/ham ©) cmE=m

_. brantfaircloth Update to fix TruSeq LT adapter sequence which had too many GTGTs Latest commit €58930a on Aug 4, 2015

bin rearrange program structure for easier tests 2 years ago

docs Update to fix TruSeq LT adapter sequence which had too many GTGTs 8 months ago

illumiprocessor Alter check against digest of timmomatic output 2 years ago

]

' UuSIn
[& .gitignore ignore py.log files 2 years ago g
[ -travis.yml adding travis.yml 2 years ago
[E) LICENSE.txt add license 2 years ago
[E MANIFEST add MANIFEST 2 years ago
B README.md update trimmomatic citation 2 years ago -
[&) pre-process-example.conf update example file for current version 2 years ago Aut O I I l ath a’lly te St S C O d e
) setup.py bump version 2 years ago

when it changes
illumiprocessor cme=m on COmmit

illumiprocessor is a tool to batch process illumina sequencing reads using the excellent trimmomatic package. The program
takes a configuration file that is formatted in Microsoft Windows INI file format (key:value pairs, see the example file).

illumiprocessor will trim adapter contamination from SE and PE illumina reads and is capable of dealing with double-
indexed reads and read trimming (example to come shortly). The current version of illumiprocessor uses trimmomatic
instead of scythe and sickle (used in v1.x) because we have found the performance of trimmomatic to be better, particularly
when dealing with double-indexed illumina reads. However, you may find that running scythe after trimming with
illumiprocessor or trimmomatic ensures that every bit of potential adapter contamination is removed.

illumiprocessor is suited to parallel processing in which each set of illumina reads are processed on a separate (physical)
compute core. illumiprocessor assumes that all fastq files input to the program represent individuals samples (i.e.,



Software Testing

® © ® | & Travis Cl - Test and Deplo, x 2

€« c

% Apps [ Altmetricit! |]|5 Integrated Taxonor LSU Courses [5] Google Docs @ Hangout () BIOL 7800 [ pinboard

® ® o illumiprocessor/test_illum: = x -

https://travis-ci.org

€« (& GitHub, Inc. [US] https://github.com/faircloth-lab/illumiprocessor/blob/master/test/test_illumiprocessor.py . @ q‘ P &8

i Apps [ Altmetric it! LSU Courses

|T]5 Integrated Taxonomn E] Google Docs @ Hangout () BIOL 7800 [ pinboard Blog ~Status  Help

(c) 2014 Brant Faircloth || http://faircloth-lab.org/
All rights reserved.

Test and Deploy with Confidence

Easily sync your GitHub projects with Travis Cl and you’ll be testing your code in minutes!

This code is distributed under a 3-clause BSD license. Please see
LICENSE.txt for more information.

Created on 31 January 2014 12:36 PST (-0800)

wun

import os
import glob
import hashlib

import pdb

class TestGetTruHtReads:
def test_enough_reads(self, fake_truht_reads):
assert len(fake_truht_reads) ==

| |
def test_correct_file_names(self, fake_truht_reads):

expected_rl = set([ U S | n
'fake-truht_S1_L0@01_R1_001.fastq.gz',
'fake-truht_S2_L0@01_R1_001.fastq.gz'

1)

expected_r2 = set([
'fake-truht_S1_L0@01_R2_001.fastq.gz',
'fake-truht_S2_L001_R2_001.fastq.gz'

1)

observed_rl = []

observed_r2 = []

°
Automatically tests code
observed_rl.extend( [os.path.basename(r) for r in read.rl])

observed_r2.extend( [os.path.basename(r) for r in read.r2])
assert set(observed_rl) == expected_rl

when it changes

class TestS1SequenceData:
def test_home_dir(self, s1): u
assert sl.homedir == os.path.join(
os.path.dirname(__file_ ),
"truht/clean/fake-truht1"
)

def test_sl1_i5(self, sl1):
assert s1.i5 == 'i5-06_F'

def test_s1_iSa(self, sl1):
assert sl.i5a == 'AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTGGCTGTGTAGATCTCGGTGGTCGCCGTATCATT!

def test_s1_iS5s(self, sl1):
assert s1.i5s == 'AGTTGGCT'

Free tor open-source projects

def test_s1_iS5s_revcomp(self, s1):
assert sl1.i5s_revcomp is True

def test_sl1_i7(self, sl1):

mweeonrt 61 37 = 137 .00 111



Documentation

One of the most under-appreciated and under-valued
aspects of a good software package

Good documentation canamake or break

your application
(and determine whether you ever have any users)



® ® Obiolprogramming/syllabur X

& (& GitHub, Inc. [US] https://github.com/biolprogramming/syllabus A | i ®

i* Apps [ Atmetricit! |[|] Integrated Taxonon i) LSU Courses [5] Google Docs @ Hangout ) BIOL 7800 [9 pinboard I l I
O This repository Pull requests Issues Gist _ }

biolprogramming / syllabus © Unwatch ~ ¥ Fork

<> Code Issues 0 Pull requests 0 Pulse Graphs Settings

Syllabus for Computer Programming for Biologists (BIOL 7800) at Louisiana State University — Edit

- 4 A.D M- d
p 77 commits 1 branch > 0 releases 1 contributor R- u — d’ ® m

Branch: master v New pull reques New file  Upload files  Find file SSH~ git@github.com:biolprogra [ [£3] Download ZIP

' brantfaircloth Fix link. Latest commit 5bb@d4e 2 hours ago

el At top-level of a repository

B .gitattributes adding git-Ifs 2 months ago

- . offers a nice, easy way to
E5 README.md qUiCI(Iy document a, Smaller
Computer Programming for Biologists Pr’ogram or PaCI(age.

Course: BIOL 7800, LSU
Time/Location: T/Th, 10:30 - 11:50 AM | 0206 Williams
Instructor: Brant Faircloth
Need help?
o Slack, don't email
o Problem with the syllabus? File an issue
Office Hours T/Th 12:00 - 1:30 PM | 220 Life Sciences

These README.md documents
are markdown formatted

Course description

The analysis of large data sets in biological research is becoming common, particularly as new sequencing technologies
and data collection strategies exponentially increase the amount of data that can be collected by an individual researcher.
Programmatic approaches are often needed to format and analyze these large data sets, yet few biologists receive training
in applying programming languages to these tasks. Programming for Biologists is meant to introduce graduate or advanced
undergraduate students to the practice of computer programming as it is applied to biological problems using a common
programming language (Python, R) and programmatic techniques and algorithms.




Documentation

These README.md documents
are markdown formatted

README.md — /Users/bcf/github-app/biol7800/syllabus

README.md

# Computer Programming for Biologists

* xkCourse:*xx [BIOL 7800,
LSU] (http://catalog. lsu.edu/preview_course_nopop.php?catoid=1&coid=10
01)
* *xkTime/Locatipn:*x T/Th, 10:30 - 11:50 AM | 0206 Williams
* *kxInstructor:xx [Brant
Faircloth] (https://github.com/brantfaircloth/)
* *xNeed help?kx
[Slack] (https://biolprogramming.slack.com), don't email
* Problem with the syllabus? File an
[issue] (https://github.com/biolprogramming/syllabus/issues)
< *xk0ffice Hoursxx T/Th 12:00 - 1:30 PM | 220 Life Sciences

## Course description

The analysis of large data sets in biological research is becoming
common, particularly as new sequencing technologies and data
collection strategies exponentially increase the amount of data that
can be collected by an individual researcher. Programmatic
approaches are often needed to format and analyze these large data
sets, yet few biologists receive training in applying programming
languages to these tasks. Programming for Biologists is meant to
_introduce_ graduate or advanced undergraduate students to the
practice of computer programming as it is applied to biological
problems using a common programming language (Python, R) and
programmatic techniques and algorithms.

## Course credo

This course xkisx* going to challenge _and_ frustrate you. A lot. I
promise. You are learning a new language really quickly - that's a
hard thing to do. Along with the hard parts of learning a new
language, in this case, comes having to learn a number of new tools

@ [™ https://raw.githubusercon: %

€« c

https://raw.githubusercontent.com/biolprogramming/syllabus/master/README.md

i Apps [\ Aitmetricitt |]|§ integrated Taxonom (i) LSU Courses [5) Google Docs @ Hangout () BIOL7800 [3) pinboard

# Computer Programming for Biologists

* **Course:** [BIOL 7800, LSU]
(http://catalog.lsu.edu/preview course nopop.php?catoid=1&coid=1001)
* **Time/Location:** T/Th, 10:30 - 11:50 AM 0206 Williams

* *x*Instructor:** [Brant Faircloth](https://github.com/brantfaircloth/)
* **Need help?**

* [Slack] (https://biolprogramming.slack.com), don't email

* Problem with the syllabus? File an [issue]
(https://github.com/biolprogramming/syllabus/issues)
* **0ffice Hours** T/Th 12:00 - 1:30 PM | 220 Life Sciences

## Course description

The analysis of large data sets in biological research is becoming common,
particularly as new sequencing technologies and data collection strategies
exponentially increase the amount of data that can be collected by an
individual researcher. Programmatic approaches are often needed to format
and analyze these large data sets, yet few biologists receive training in
applying programming languages to these tasks. Programming for Biologists
is meant to _introduce graduate or advanced undergraduate students to the
practice of computer programming as it is applied to biological problems
using a common programming language (Python, R) and programmatic techniques
and algorithms.

## Course credo

This course **is** going to challenge and frustrate you. A lot. I
promise. You are learning a new language really quickly - that's a hard
thing to do. Along with the hard parts of learning a new language, in this
case, comes having to learn a number of new tools that you have not
(likely) been exposed to. That's also really hard. You're also going to
have to actually **think** on top of all that. But, if you think, and work,
and collaborate with your classmates to understand what's going on, you
**will** end up learning much, much more in a shorter period of time than
you expected.

## Teaching philosophy / Communication
I'm here to help you learn to program a computer. It's up to you to

learn how to make that work for you . I view my role as providing
guidance and direction and your role as using that guidance and direction




Documentation
e.g. Seqtk

® ® Olhalseqtk: Toolkit for proce X

L (& GitHub, Inc. [US] https://github.com/Ih3/seqtk

2 ppps [ Atmetricit! |]|§ Integrated Taxonom (i) LSU Courses [5] Google Docs @ Hangout () BIOL7800 [3 pinboard

README.md

Introduction

Seqtk is a fast and lightweight tool for processing sequences in the FASTA or FASTQ format. It seamlessly parses both
FASTA and FASTQ files which can also be optionally compressed by gzip.

Seqtk Examples

Convert FASTQ to FASTA:

seqtk seq -a in.fq.gz > out.fa

Convert ILLUMINA 1.3+ FASTQ to FASTA and mask bases with quality lower than 20 to lowercases (the 1st command
line) orto N (the 2nd):

seqtk seq -aQ64 -q20 in.fq > out.fa
seqtk seq -aQ64 -q20 -n N in.fq > out.fa

Fold long FASTA/Q lines and remove FASTA/Q comments:

seqtk seq -C160 in.fa > out.fa

Convert multi-line FASTQ to 4-line FASTQ:

seqtk seq -10 in.fq > out.fq

Reverse complement FASTA/Q:

seqtk seq -r in.fq > out.fq

Extract sequences with names in file name.lst , one sequence name per line:




* Apps [3) Aitmetricit! |]|§ Integrated Taxonor

A Read The Docs

latest

Getting Started

Versions

Build Process

Read the Docs features
Support

Frequently Asked Questions
Read the Docs YAML Config

Webhooks

Badges

Alternate Domains
Localization of Documentation
VCS Integration

Conda Support

Canonical URLs

Single Version Documentation
Privacy Levels

User-defined Redirects
Automatic Redirects

Content Embedding

Installation
Changelog
Contributing to Read the Docs

Testing

& Read the Docs

® We|come to Read The Doc X

Documentation
Read The Docs

(& https://read-the-docs.readthedocs.org/en/latest/index.html k4N O) qj P %

LSU Courses |5 Google Docs @ Hangout () BIOL 7800 [ pinboard

Docs » Welcome to Read The Docs ©) Edit on GitHub

Welcome to Read The Docs

Read the Docs hosts documentation for the open source community. We support Sphinx docs
written with reStructuredText and CommonMark. We pull your code from your Subversion,
Bazaar, Git, and Mercurial repositories. Then we build documentation and host it for you. Think of
it as Continuous Documentation.

The code is open source, and available on github.
The main documentation for the site is organized into a couple sections:
e User Documentation
o Feature Documentation
e About Read the Docs
Information about development is also available:
¢ Developer Documentation

¢ Designer Documentation
¢ Operations Documentation

User Documentation

o Getting Started
o Write Your Docs
o Import Your Docs
+ Versions
o How we envision versions working
o Redirects onroot URLs
¢ Build Process
o How we build documentation
Understanding what'’s going on
Builder Responsibility
Packages installed in the build environment
Writing your own builder

For programs and
packages

Uses a docs directory in

your repository

documentation when It
changes



Documentation
Read The Docs

| } | ]
[ (& phyluce.readthedocs.org/en/latest/tutorial-one.html v @ q‘ P % ( i |VeS O U a real | n |Ce I I | I | |} !I I
i Apps [ Altmetricit! |[|§ Integrated Taxonom (i) LSU Courses 5] Google Docs @ Hangout () BIOL 7800 [3 pinboard y y

A phyluce

SECCI & pdf version of your docs,
[ scarchgos

Tutorial I: UCE Phylogenomics ava | | a b | e on | | ne

Purpose

Installation In the following example, we are going to process raw read data from UCE enrichments
Quality control performed against several divergent taxa so that you can get a feel for how a typical analysis
ey goes. I'm also going to use several tricks that | did not cover in the UCE Processing for

Phylogenomics section.
UCE Processing for Phylogenomics

© Tutorial I: UCE Phylogenomics The taxa we are working with will be:

Download the data
Mus musculus (PE100)

Anolis carolinensis (PE100)

Count the read data

Clean the read data . o .
I roviabiores. Free for o Len-source projects
Finding UCE loci

El(r]tr;:ing UCOEC:oci Download the data

Aligning UCE loci . . .
You can download the data from figshare (http://dx.doi.org/10.6084/m9.figshare.1284521).

Alignment cleanin . . .
LS e If you want to use the command line, you can use something like:

Final data matrices

Preparing data for RAXML and

ExaML mkdir uce-tutorial

Citing

License cd uce-tutorial

Changelog

Attributions wget -0 fastq.zip https://ndownloader.figshare.com/articles/1284521/versions/1
Funding

mkdir raw-fastq
Acknowledgements

List of Programs

mv fastq.zip raw-fastq

o v
WRITE cd raw-fastg
THE
DOCS unzip fastq.zip
Write the

Docs 2016 rm fastq.zip



