
subprocess

Programming (for biologists)

BIOL 7800

Previously…
You've been writing code to

accomplish tasks

New

Classes
Methods
Attributes

Functions

But often…
Programs already exist that do something you want to do

Sequence assembly AlignmentShell commands

tail
head
wc
cat

velvet
trinity
abYss

bwa
bowtie
lastz
blast
mafft

muscle

Or, any other external program you want to run
(from within your Python code)

AKA Pipelining
(or building a pipeline)

Python program
takes input

Sends to
program

Python program
does something

with output

Done

This can be simple

AKA Pipelining
(or building a pipeline)

program.py

trimmomatic

Done

Or it can be complex

program.py

abYss

ortholog
search

program.py

program.py

alignment

program.py

alignment
trimming

subprocess
But, how do you do all of this?

A python (standard) module that allows you to

"spawn new processes, connect to their input/output/error pipes and
obtain their return codes"

- python 3.5 doc

What does subprocess require to make this magic happen?
Basically, that you have a "scriptable" program

you want to run from python

Not so much GUI More like command-line

subprocess

subprocess
What does subprocess require to make this magic happen?

Basically, that you have a "scriptable" program
you want to run from python

Generally, that means a command-line program
but not always

A good example is Arlequin

Has both GUI and command-line interaction

anatomy of subprocess
In: import subprocess

In: subprocess.run(['ls'])
Out: CompletedProcess(args=['ls'], returncode=0)

Import subprocess

Use run to run prog

run() method is responsible
for running external program program (and arguments)

goes in a list

subprocess returns a
CompletedProcess object

The returncode is programming lingo for
success = 0
failure = 1

anatomy of subprocess
In: import subprocess

In: my_process = subprocess.run(['ls'])
In: dir(my_process)
Out:
'args',
 'check_returncode',
 'returncode',
 'stderr',
 'stdout'
In: my_process.args
Out: ['ls']
In: my_process.check_returncode()
Out:
In: print(my_process.check_returncode())
Out: None

We can store
CompletedProcess

object of subprocess in a
variable

These are the
CompletedProcess
attributes & methods

We can access the .args
attribute

We can use the
check_returncode()
method to make sure

program ran
check_returncode() returns
None if program ran successfully

anatomy of subprocess
In: import subprocess

In: my_process = subprocess.run(['ls', '-ZZZ'])
In: my_process.args
Out: ['ls', '-ZZZ']

In: my_process.returncode
Out: 1
In: my_process.check_returncode()
Out:

CalledProcessError Traceback (most recent call last)
<ipython-input-21-c11267dce8c6> in <module>()
----> 1 my_process.check_returncode()

/Users/bcf/anaconda/envs/py35/lib/python3.5/subprocess.py in check_returncode(self)
 660 if self.returncode:
 661 raise CalledProcessError(self.returncode, self.args, self.stdout,
--> 662 self.stderr)
 663
 664
CalledProcessError: Command '['ls', '-ZZZ']' returned non-zero exit status 1

These arguments are wrong
(they don't work)

Use run to run prog
(with bad arguments)

Let's look at actual
returncode

Now, let's check it…

Error !

anatomy of subprocess
okay, that's great, but where's our output?

(a quick diversion into the land of pipes)

ls
stdout

stderr

(good stuff)

(bad stuff)

when you
run a command

it outputs 2
types of stuff

(to 2 different places)

Normal program output
(e.g. file and dir listing)

Error information
(failure text, etc.)

pipe

pipe

anatomy of subprocess
okay, that's great, but where's our output?

ls
stdout

stderr

(good stuff)

(bad stuff)

when you
run a command

it outputs 2
types of stuff

(to 2 different places)

Often, these are
merged back

together

And sent to
your terminal

When you run a command from your shell

pipe

pipe pipe

pipe

anatomy of subprocess

ls
stdout

stderr

(good stuff)

(bad stuff)

when you
run a command

it outputs 2
types of stuff

(to 2 different places)

Normal program output
(e.g. file and dir listing)

Error information
(failure text, etc.)

When you run a command from subprocess

pipe

pipe

The ideal situation

anatomy of subprocess

program
(good stuff)

(bad stuff)

some programs
take everything

Normal program output
(e.g. file and dir listing)

Error information
(failure text, etc.)

When you run a command from subprocess

But it's not always ideal…

& pipe stdout

and write it
all to stdout

anatomy of subprocess

program
(good stuff)

(bad stuff)

some programs
take everything

Normal program output
(e.g. file and dir listing)

Error information
(failure text, etc.)

When you run a command from subprocess

But it's not always ideal…

& pipe

and write it
all to stderr

stderr

anatomy of subprocess

ls
stdout

stderr

(good stuff)

(bad stuff)

you can also send information to
some programs on stdin

Normal program output
(e.g. file and dir listing)

Error information
(failure text, etc.)

pipe

pipe

One more little wrinkle…

pipestdin

anatomy of subprocess

program
stdout

stderr

(good stuff)

(bad stuff)

pipe

pipe

So, generally, we have 3 types of things to worry about

pipestdin

And, the stdout is sometimes different
from what the program can write to a file
(although we can also store stdout and stdin in a file)

anatomy of subprocess
In: import subprocess

In: my_proc = subprocess.run(['ls'], stdout=subprocess.PIPE)
In: my_proc.args
Out: ['ls']

In: my_proc.returncode
Out: 0

program (and arguments)
goes in a list

set keyword stdout
to subprocess.PIPE

In: my_proc.stdout
Out: b'Applications\nCreative Cloud Files
\nDesktop\nDocuments\nDownloads\nDropbox
\nDropbox (faircloth-lab)\nLibrary
\nMesquite_Support_Files\nMovies\nMusic
\nPictures\nPublic\nVirtual Machines
\nanaconda\nbin\ngit\ngithub-app\nnotebooks
\nsrc\ntmp\n'

See if program ran
successfully

stdout is in the stdout
attribute

stdout is returned as a
bytes object, which is not

the same as a string

(more in a minute)

We're only
capturing stdout

anatomy of subprocess
In: my_proc = subprocess.run(['ls'],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)

In: my_proc.returncode
Out: 0

In: my_proc.stdout
Out: b'Applications\nCreative (…truncated…)'

See if program ran successfully

Capture stdout and stderr

(it did)

In: my_proc.stderr
Out: b''

stdout is in the stdout
attribute

There is nothing in stderr
attribute

(program ran successfully)

anatomy of subprocess
In: my_proc = subprocess.run(['ls', '-ZZZ'],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)

In: my_proc.returncode
Out: 1

In: my_proc.stdout
Out: b''

See if program ran successfully

These arguments are wrong
(they don't work)

Capture stdout and stderr

(it didn't)

In: my_proc.stderr
Out: b'ls: illegal option -- Z\nusage: ls [-
ABCFGHLOPRSTUWabcdefghiklmnopqrstuwx1] [file ...]\n'

There is nothing in stdout
(didn't run)

But there is something in stderr
(because the program failed)

anatomy of subprocess
In: my_proc = subprocess.run(['ls'],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE) Capture stdout and stderr

In: my_proc.stdout
Out: b'Applications\nCreative Cloud Files\nDesktop
\nDocuments\nDownloads\nDropbox\nDropbox (faircloth-lab)
\nLibrary\nMesquite_Support_Files\nMovies\nMusic
\nPictures\nPublic\nVirtual Machines\nanaconda\nbin\ngit
\ngithub-app\nnotebooks\nsrc\ntmp\n'

Can we do something with the stdout?

In: type(my_proc.stdout)
Out: bytes

stdout is returned as a
bytes object, which is not

the same as a string

stdout is returned as a
bytes object, which is not

the same as a string

bytes objects are a primitive way to encode a string

anatomy of subprocess
In: my_proc = subprocess.run(['ls'],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE) Capture stdout and stderr

In: my_proc.stdout
Out: b'Applications\nCreative Cloud Files\nDesktop
\nDocuments\nDownloads\nDropbox\nDropbox (faircloth-lab)
\nLibrary\nMesquite_Support_Files\nMovies\nMusic
\nPictures\nPublic\nVirtual Machines\nanaconda\nbin\ngit
\ngithub-app\nnotebooks\nsrc\ntmp\n'

Can we do something with the stdout?

In: my_proc.stdout.split("\n")
Out: TypeError: a bytes-like object is required, not 'str'

stdout is returned as a
bytes object, which is not

the same as a string

This fails, because
my_proc.stdout is a

bytes object, not a string

And bytes objects need to
be encoded to
string objects

anatomy of subprocess

In: my_proc = subprocess.run(['ls'],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)

Two ways around the problem

In: my_proc.stdout.decode("utf-8").split("\n")
Out:
['Applications',
 'Creative Cloud Files',
 'Desktop',
 'Documents',
 'Downloads',
 'Dropbox',
 'Dropbox (faircloth-lab)',
 'Library',
 'Mesquite_Support_Files',
 'Movies',
 (…truncated…)
 '']

Use the bytes object's
decode() method to convert
it to "utf-8" (or other) encoding

Method 1

anatomy of subprocess

In: my_proc = subprocess.run(['ls'],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 universal_newlines=True)

Two ways around the problem

Pass the universal_newlines
argument to

subprocess.run()

Method 2

In: type(my_proc.stdout)
Out: str

In: my_proc.stdout.split("\n")
Out:
['Applications',
 'Creative Cloud Files',
 'Desktop',
 'Documents',
 'Downloads',
 'Dropbox',
 (…truncated…)
 '']

stdout is now a string

And, we can easily
split a string

anatomy of subprocess

In: with open('stdout.txt', 'w') as stdout_file:
 with open('stderr.txt', 'w') as stderr_file:
 my_proc = subprocess.run(['ls'],
 stdout=stdout_file,
 stderr=stderr_file,
 universal_newlines=True)

Pipes are nice, but we may want to write stdout/stderr to a file
(particularly when there is a lot of it - our pipes can get full)

In: print(open('stdout.txt', 'r').read())
Out:
Applications
Creative Cloud Files
Desktop
Documents
Downloads
Dropbox
(…truncated…)

Open two files, one each to
capture stdout and stderr

The lines that were going to
our stdout pipe are now

being written to a file

Same for stderr
(but there's nothing there)

We can now do anything we want with these file (parse them, etc.)

anatomy of subprocess
What if we want to chain several programs together ?

program 1
stdout

stderr

(good stuff)

(bad stuff)

pipe

pipe

program 2pipe

stdout

stderr

(good stuff)

(bad stuff)

pipe

pipe

anatomy of subprocess
What if we want to chain several programs together ?

ls
stdout

stderr

(good stuff)

(bad stuff)

pipe

pipe

greppipe

stdout

stderr

(good stuff)

(bad stuff)

pipe

pipe

list files/dirs search for those
that start with "D"

ls | grep "^D"

or, as we would type it in the shell

anatomy of subprocess
In: my_proc_1 = subprocess.run(['ls'],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)

 my_proc_2 = subprocess.run(['grep', '^D'],
 input=my_proc_1.stdout,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)

 print(my_proc_2.stdout)

Chaining programs together by pipes

Out: b'Desktop\nDocuments\nDownloads\nDropbox\nDropbox (faircloth-lab)\n'

stdout is returned as a
bytes object

Run ls, send the output to
stdout

Take the
my_proc_1.stdout

as input, and run grep
against it

anatomy of subprocess
In: my_proc_1 = subprocess.run(['ls'],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 universal_newlines=True)

 my_proc_2 = subprocess.run(['grep', '^D'],
 input=my_proc_1.stdout,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 universal_newlines=True)

 print(my_proc_2.stdout)

Chaining programs together by pipes (with string output)

Out:
Desktop
Documents
Downloads
Dropbox
Dropbox (faircloth-lab)

We need to specify
universal_newlines

in both processes for string
output

stdout is returned as a
string

anatomy of subprocess

In: my_proc_1 = subprocess.run(['java', '-jar', '/usr/bin/
gatk', '-T', 'UnifiedGenotyper', '-nt', '12', '—R', 'genome.fasta',
'-I', 'genome.bam', '-gt_mode', 'DISCOVERY', '-glm', 'INDEL'],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 universal_newlines=True)

You make a really long list of
all the parameters…

Each part of a
parameter is a list item

Numbers must be
converted to strings

What about programs with lots of parameters?

java -jar /usr/bin/gatk -T UnifiedGenotyper -nt 12 —R genome.fasta -I genome.bam -gt_mode DISCOVERY -glm INDEL

e.g.

anatomy of subprocess

In: command = ['java', '-jar', '/usr/bin/gatk', '-T',
'UnifiedGenotyper', '-nt', '12', '—R', 'genome.fasta', '-I',
'genome.bam', '-gt_mode', 'DISCOVERY', '-glm', 'INDEL']

In: my_proc_1 = subprocess.run(
 command,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 universal_newlines=True)

Because this is just a
list, you can make
the list and place it

in a variable…

Then, pass the
variable to

subprocess.run

What about programs with lots of parameters?

java -jar /usr/bin/gatk -T UnifiedGenotyper -nt 12 —R genome.fasta -I genome.bam -gt_mode DISCOVERY -glm INDEL

e.g.

anatomy of subprocess
In: import shlex

In: shlex.split('java -jar /usr/bin/gatk -T UnifiedGenotyper
-nt 12 —R genome.fasta -I genome.bam -gt_mode DISCOVERY -glm
INDEL')

Out:
['java',
 '-jar',
 '/usr/bin/gatk',
 '-T',
 'UnifiedGenotyper',
 '-nt',
 '12',
 '—R',
 'genome.fasta',
 '-I',
 'genome.bam',
 '-gt_mode',
 'DISCOVERY',
 '-glm',
 'INDEL']

What about programs with lots of parameters?

java -jar /usr/bin/gatk -T UnifiedGenotyper -nt 12 —R genome.fasta -I genome.bam -gt_mode DISCOVERY -glm INDEL

e.g.

You can also use
the shlex module
to help you split

complex command
line statements

Then, use the list that
shlex makes as your

input

