
speed, timing, and
multiprocessing

Programming (for biologists)

BIOL 7800

So far….
We've only talked about making
programs functions, not making

programs fast…

…and we've run only 1 process at
a time

So far….
We've not talked at all about

using multi-CPU resources to run
our jobs.

Oak Ridge National Laboratory
Titan Supercomputer

Speed
is tricky thing…

and can be achieved in a variety of ways

Write more efficient code Use more CPU resources

Making things faster
We're going to focus on the following code

Does the following 100 times

Selects 1 random numbers
Adds that to a list

Does the following 1000 times

Sums the list of 1000 numbers

Sums the list of 100 sums

Adds that to a list

Pretty prints the output

In: python example1.py
Out: The sum is: 5,001,095,443

Example

Making things faster
Python provides the timeit module for testing speed

You can use it several ways… the easiest is probably

python -m timeit -r 3 -n 5 -v -s 'from example1 import main' 'main()'

Import timeit

3 iterations

5 fxn
calls

verbose
output

setup statement

The sum is: 5,017,823,857
The sum is: 4,989,840,976
(…truncated…)

raw times: 0.601 0.6 0.598
5 loops, best of 3: 120 msec per loop

Making things faster

raw times: 0.601 0.6 0.598
5 loops, best of 3: 120 msec per loop

How can we make this faster?

(without using multiple CPUs)

Increase efficiency!!

Making things faster
raw times: 0.601 0.6 0.598
5 loops, best of 3: 120 msec per loop

Put all numbers in lists…

then compute sums…

raw times: 0.608 0.607 0.61
5 loops, best of 3: 121 msec per loop

Not better

Approach #1: Big list

time to beat

Making things faster
raw times: 0.601 0.6 0.598
5 loops, best of 3: 120 msec per loop

Put all numbers in lists…

then use itertools to unpack lists, and sum

raw times: 0.639 0.627 0.638
5 loops, best of 3: 125 msec per loop

Not better

Approach #2: itertools
time to beat

Making things faster
raw times: 0.601 0.6 0.598
5 loops, best of 3: 120 msec per loop

Select 1000 numbers from a list

raw times: 1.37 1.36 1.33
5 loops, best of 3: 265 msec per loop

Much worse!

Approach #3: bigger random draw
time to beat

(e.g. remove a loop)
Sum list of sum

Why?
2.2x slowdown

Making things faster
raw times: 0.601 0.6 0.598
5 loops, best of 3: 120 msec per loop

Select 1000 numbers from a list

raw times: 0.457 0.443 0.443
5 loops, best of 3: 88.7 msec per loop

Approach #4: bigger random draw alt. version
time to beat

(e.g. remove loop)

Sum list of sum

Create range of number only 1 time

Waaaay better!

New best time!

1.3x speedup

Making things faster
raw times: 0.457 0.443 0.443
5 loops, best of 3: 88.7 msec per loop

Put all summing in a list comprehsion
raw times: 0.466 0.457 0.462
5 loops, best of 3: 91.5 msec per loop

Approach #5: use list comprehension
time to beat

Create range of number only 1 time

Not better

Making things faster

Append sum(int) to a list

raw times: 0.044 0.0455 0.0454
5 loops, best of 3: 8.8 msec per loop

Approach #6: use numpy
time to beat

Sum list of sum
(use regular Python sum)

Use numpy to randomly sample integers

Much better!

New best time!

raw times: 0.457 0.443 0.443
5 loops, best of 3: 88.7 msec per loop

10x speedup

Making things faster

Append numpy.sum(int) to a list

raw times: 0.00844 0.00876 0.00837
5 loops, best of 3: 1.67 msec per loop

Approach #7: use numpy (with numpy.sum)
time to beat

Sum list of sum
(use regular Python sum)

Use numpy to randomly sample integers

Much better!

raw times: 0.044 0.0455 0.0454
5 loops, best of 3: 8.8 msec per loop

5.2x speedup (over 1st numpy version)

71.0x speedup (over 1st python version)

Making things faster

raw times: 0.00731 0.00662 0.00728
5 loops, best of 3: 1.32 msec per loop

Approach #8: everything numpy
time to beat

Select an array of 100 rows of 1000
random numbers and numpy.sum those

Better!

raw times: 0.00844 0.00876 0.00837
5 loops, best of 3: 1.67 msec per loop

1.2x speedup (over 2nd numpy version)

90x speedup (over 1st python version)

Can we go even faster?

Making things faster
Now, I've shown you all of those to show you that how you write your

code is very, very important to how fast it runs

We achieved ~90x speedup by optimizing our code!
(that's pretty darn amazing)

Write more efficient code

So being efficient about how you write your code

can make a huge difference

Making things faster
We can also achieve speedups by taking advantage of multiple CPUs

on many (current) computers

2 CPU cores 6-20 CPU cores 16-20 CPU cores

Laptop Workstation High-performance Computer

One important thing to remember is that physical CPUs are what's (mostly) important
And most Intel chips have both physical and virtual CPUs (via "hyperthreading")

The number of physical CPUs you have is usually 1/2 that of physical + virtual CPUs

Making things faster
In Python, the multiprocessing module helps us parallelize code

In: import multiprocessing

In: def my_function(x):
 return x**x

In: pool = multiprocessing.Pool(2)

In: my_result = pool.map(my_function, [2, 4, 6, 8, 10])

Out: [4, 256, 46656, 16777216, 10000000000]

And, the multiprocessing.Pool class is the easiest way to use multiprocessing

import the multiprocessing module

define some function we want to
run in parallel

Create instance of multiprocessing.Pool
class

of CPUs

"Map" the values in the list onto
the function

You get back a list of results,
returned by the function, one for
each value in the list you "mapped"

Making things faster

CPU 1

CPU 2

In: my_result = pool.map(my_function, [2, 4, 6, 8, 10])

def my_function(x):
 return x**x

def my_function(x):
 return x**x

Python creates copies of your function and "loads" one copy on each CPU

Making things faster

CPU 1

CPU 2

In: my_result = pool.map(my_function, [2, 4, 6, 8, 10])

def my_function(x):
 return x**x

def my_function(x):
 return x**x

Each CPU processes the incoming data, and writes the results to a list

[x, y]

result list

Making things faster

CPU 1

CPU 2

In: my_result = pool.map(my_function, [2, 4, 6, 8, 10])

def my_function(x):
 return x**x

def my_function(x):
 return x**x

Execution moves to the next data items, and those results are written to the output list

[x, y, z, q]

result list

Making things faster

CPU 1

CPU 2

In: my_result = pool.map(my_function, [2, 4, 6, 8, 10])

def my_function(x):
 return x**x

def my_function(x):
 return x**x

Execution moves to the last data item, and those results are written to the output list

[x, y, z, q, r]

returned to the user in my_result

Making things faster
raw times: 0.601 0.6 0.598
5 loops, best of 3: 120 msec per loop

time to beat

Make a list of lists
[
 [x, y, …, z],
 [x, y, …, z],
 …
 [x, y, …, z],
]

This function just sums a list

We Pool.map the list of lists onto
get_sum. Each CPU sums one
sublist and returns the sum.

raw times: 0.71 0.706 0.705
5 loops, best of 3: 141 msec per loop

Much slower!

Making things faster

raw times: 0.601 0.6 0.598
5 loops, best of 3: 120 msec per loop

time to beat
raw times: 0.71 0.706 0.705
5 loops, best of 3: 141 msec per loop

Much slower!

No multiprocessing Multiprocessing

Why, if we are using more CPUs is multiprocessing
much slower?

(and we're nowhere near results we saw from numpy)

Making things faster
Why, if we are using more CPUs is multiprocessing

much slower?

CPU 1

CPU 2

In:

def my_function
 return x**x

def my_function
 return x**x

Python creates

There's a fair amount of "overhead" setting up multiprocessing

Making things faster
Why, if we are using more CPUs is multiprocessing

much slower?

We often need job components to be more intensive in order
to see benefits

CPU 1

CPU 2

In:

def my_function
 return x**x

def my_function
 return x**x

Python creates

Making things faster
Getting lots of data in to multiprocessing.Pool.map() can be tricky

You need to "package" your data into lists/tuples

var1

var2

var3

var4

var1

var2

var3

var4

var1

var2

var3

var4

var1

var2

var3

var4

Unit Unit Unit Unit

Let's say you have 4 units of "work"

Making things faster
Getting lots of data in to multiprocessing.Pool.map() can be tricky

var1

var2

var3

var4

var1

var2

var3

var4

var1

var2

var3

var4

var1

var2

var3

var4

Unit Unit Unit Unit

You have 4 units of "work"

In: def my_function(work):
 sum = var1 + var2 + var3 + var4
 return sum

In: my_result = pool.map(my_function, <something here>)

The function we're mapping to can only have one input

So, how can we make 4 work
units of 4 variable into 1 work unit?

In: def my_function(work):
 var1, var2, var3, var4 = work
 sum = var1 + var2 + var3 + var4
 return sum

In: work = (
 (var1, var2, var3, var4),
 (var1, var2, var3, var4),
 (var1, var2, var3, var4),
 (var1, var2, var3, var4)
)

In: my_result = pool.map(my_function, work)

Making things faster
The function we're mapping to can only have one input

We can package data as 4 list/tuple items,
then pass those to mapped function

unit 1
unit 2
unit 3
unit 4

and unpack them

Getting lots of data in to multiprocessing.Pool.map() can be tricky

In: def my_function(work):
 var1, var2, var3 = work
 var1 += 1
 var2 += 2
 var3 += 3

 return ????

In: work = (
 (var1, var2, var3, var4),
 (var1, var2, var3, var4),
 (var1, var2, var3, var4),
)

In: my_result = pool.map(my_function, work)

Making things faster

The mapped function can only return one result

unit 1
unit 2
unit 3

Getting lots of data out of multiprocessing.Pool.map() can also be tricky

How can we deal with this?

In: def my_function(work):
 var1, var2, var3 = work
 var1 += 1
 var2 += 2
 var3 += 3

 return [var1, var2, var3]

In: work = (
 (var1, var2, var3, var4),
 (var1, var2, var3, var4),
 (var1, var2, var3, var4),
)

In: my_result = pool.map(my_function, work)
In: for elem in my_result:
 var1, var2, var3 = elem
 # do stuff

Making things faster

The mapped function can only return one result

unit 1
unit 2
unit 3

Getting lots of data out of multiprocessing.Pool.map() can also be tricky

We can package those data into a single tuple or list

And then unpack them

Making things faster
How do you determine the number of CPUs on a system?

It's a little hard…
Because hyperthreading is hard to detect

You can ask user for -cores

def get_args():
 parser = argparse.ArgumentParser(
 description="""Do stuff in parallel""",
)
 parser.add_argument(
 "--cores",
 type=int,
 default=1,
 help="Process in parallel using --cores"
)

def main():
 args = get_args()
 pool = multiprocessing.Pool(args.cores)
 my_result = pool.map(my_function, [2, 4, 6, 8, 10])

Then instantiate multiprocessing.Pool
with args.cores

Approach #1

Making things faster
How do you determine the number of CPUs on a system?

It's a little hard…
Because hyperthreading is hard to detect

You can use multiprocessing to
"count" your CPU cores

def main():
 cores = multiprocessing.cpu_count()

 pool = multiprocessing.Pool(cores)

 my_result = pool.map(my_function, [2, 4, 6, 8, 10])

Then instantiate multiprocessing.Pool
with cores

Approach #2

This will return the # of "logical" CPUs
(physical + virtual)

