Programs, Variables &
Expressions

Programming (for biologists)

BIOL 7800

Operators

I . these are the common (arithmetic) operators
+ _ N / // % * %
addition multiplication integer div. exponent

subtraction division modulus

Order of Operations
PENMDAS

Parentheses are executed first
Exponents are executed second

Mutiplication and LJivision are executed third
A ddition and Subtraction are executed fourth

Operators with the same precedence are run from
left to right

Assignment statements

equals vs. equals-equals

— VS. —1—

Assignment Equivalence
'set variable to something” 'this I1s equal to that”
.0.X=9 e.q.
ifx==85:

do something

Variable naming

Variable names are typically lowercase, descriptive, and
separated by underscores

my_variable_name = 10

In other languages, variables are often "camel-cased” AKA
CapWords

MyVariableName = 10

(This naming scheme is suggested for python classes)

alues and types

Python is an

def _mean_and_variance_pop_n(values):

n==~0
s = 0.0
ss = 0.0
for v in values:
n+=1
S += V
SS += VkV
if n = 0:

raise IndexError("values in mean_and_variance cannot be empty")
mean = float(s)/n
var = (ss - meanxs)/n
return mean, var, n

Very high-level language

dynamically typed

Values and types

But, just because Python is dynamically typed
variables don't have a type

type() function

type(100) type(L.6) type('cat")
Out[3d]: int Out[4]: float Out[5]: str
What about:
type(':2.6")

??

Expressions v. dtatements

Just some programming nomenclature...

expressions are combinations of
values, variables, and operators
n=12
n+a4 * 36

statements are "units of code"
that have some effect

print("dog")
type(L.6)

Mtring Operations

Can you add a string”?

"brrrrrp” "Is a" "onomatopoeia”

Why, ves, you can!

"brrrrrp"” + "isa" + "onomatopoeia"
"brrrrrpis aonomatopoeia”

This Is known as "string concatenation®

String Operations

But what about multiplication”

"brrrrrp" * 10

Out[6]: 'brrrrrpbrrrrrpbrrrrrpbrrrrrpbrrrrrpbrrrrrpbrrrerrpbrrrerrpbrrrrrpbrrrrrp!

Comments

There are several kinds of comments you will see In

standard comment above something
followed by the something you are commenting

Comments

There are several kinds of comments you will see In

code you are commenting # followed by a comment

(these are called "in-line" comments)

Comments

There are several kinds of comments you will see In

here is a giant block of code
that you would like to make
a giant comment about.

This is also used for preambles,
license info, novels, etc.

(these are called "block” comments)

Comments

Generally, comments should be informative and document
non-obvious parts of the code

This is redundant

set variable dogs to "stinky"
dogs = "stinky"

This Is better, but still somewhat redundant

et values O to 50 by 5
[elem for elem in range(0,51) ifelem % 5 == 1]

Debugging

We will get to "fancy’ debugging, but one of the first
debugging "tools" to use is the print () function

for number in range(O, 100):
if number % 5 == 0:
my_special_function(number)

Debugging

We will get to "fancy’ debugging, but one of the first
debugging "tools" to use is the print () function

for number in range(O, 100):
if number % 5 == 0:
print(number)
my_special_function(number)

Debugging

We will get to "fancy’ debugging, but one of the first
debugging "tools" to use is the print () function

for number in range(O, 100):
if number % 5 == 0:
my_special_function(number)

else:
print(number)

Programs

How to run them

bcf at wasabi in ~

$ ipython

Python 2.7.11 |Anaconda 2.4.1 (x86_64)| (default, Dec 6 2015, 18:57:58)
Type "copyright", "credits" or "license" for more information.

IPython 4.0.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra details.

13: i

Programs

How to run them

@ repl.it - Assignment 1.1 - Your i X -+
&« c & & https://repl.it/teacher/assignments/1418209/preview Googlebd @+ & Y IND ® 9 a8 =

L} Most Visited & Gdocs & Hangout m Gscholar tsu LSUHPC ji LSU Courses @ RefWorks [AWS @ Pinboard =# sci-hub illumina O phyluce

(.)‘rep|;.if R rapltiaiky) myrepls teacher learn/teach notifications brantfaircl... ~

® (games)

4 back to edit run p Due: Aug 28,2018 08 : 59 am

Below, write a one line statement that will print the
name of the person who invented Python as output.

Assignment 1

For this first, assignment, we're going to work on becoming comfortable with the commands we
can enter in repl.it and how those commands produce output. You will likely need to look up
and read some documentation for Python (or other sources like wikipedia).

Task 1.1 (S pts)

Write a very small program (this only needs to be a one line statement) to print the name of the
person who invented Python using the print () function.

Python 3.6.1 (default, Dec 2015, 13:05:11)

[GCC 4.8.2] on linux

Programs

How to run them

hello_world.py

my first little program

Created by Brant Faircloth on 18 Jan 2016.
Copyright 2016 Brant C. Faircloth. All rights reserved.

import sys

print("Python {}".format(sys.version_info))
15 print("Hello world")

bcf at wasabi in ~/Desktop
$ python hello_world.py

Python sys.version_info(major=2, minor=7, micro=11, releaselevel='final', serial=0)
Hello world

Programs

How to structure them

15

hello_world.py

"'hash bang"

my first little program description

Created by Brant Faircloth on 18 Jan 2016.
Copyright 2016 Brant C. Faircloth. All rights reserved.

import sys

actual program

print("Python {}".format(sys.version_info))
print("Hello world")

13

Programs

How to structure them

hello_world.py o

my first little program

Created by Brant Faircloth on 18 Jan 2016.
Copyright 2016 Brant C. Faircloth. All rights reserved.

import sys

def main():

print("Python {}".format(sys.version_info)) function
print("Hello world")

if _name__ == '__main__"':

main()

ITfmain” stmnt

Programs

How not to structure them

You wa

GIANT, mono

functions

Nt

ithic

1

pef combineLoci(self, record, min_distance):
''"'combined adjacent loci - this is somewhat cumbersome due to the
format of the matches returned from msat (a dict with keys = motif).
Essentially, we are running a pairwise comparison across all motifs
located to determine which are within a predetermined distance from
one another'''
temp_combined = []
reorder = ()

for motif in record.matches:
for pos,val in enumerate(record.matches[motif]):
reorder += ((motif, pos, val([e][e], val[e@][1], val[1], val[2]),)

reorder = sorted(reorder, key=operator.itemgetter(2))

for i1 in reorder:
included = False
if not temp_combined:
temp_combined.append([i])
else:
for gp, g in enumerate(temp_combined):
for elem in g:
if i[2] - elem[3] <= min_distance:
temp_combined [gp] .append(1i)
included = True
break
if not included:
temp_combined.append([i])

for key, group in enumerate(temp_combined):
motifs = []
if len(group) > 1:

gs = group([0][2]

ge = group[-1] [3]

gp = group([0] [4]

gf = group[-1][5]
else:

gs, ge = group[@] [2], group[@] [3]

gp, gf = group([@][4], group[@] [5]
name = ''

member_count = 0
for pos,member in enumerate(group):
if pos + 1 < len(group):
dist = group[pos + 1]1[3] - group[pos][3]
if dist > 1:
spacer = '...'
else:
spacer = "'
else:
spacer = ''
length = (member[3]-member([2])/1len(member[0])
name += '%s(%s)%s' % (member[0], length, spacer)
motifs.append([member[@], length])
member_count += 1
record.combined[key] = (((gs, ge), gp, gf, member_count, motifs, name),)
return record

You want
functions.

Programs

How to structure them

~atomic

68

import sys

import glob

import argparse

import ConfigParser

from phyluce import lastz

from collections import defaultdict
import shutil

import pdb

class FullPaths(argparse.Action):
""Expand user- and relative-paths"""
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, os.path.abspath(os.path.expanduser(values)))

class CreateDir(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):

d = os.path.abspath(os.path.expanduser(values))

if os.path.exists(d):
answer = raw_input(" [WARNING] Output directory exists, REMOVE [Y/n]? ")
if answer == "Y":
shutil.rmtree(d)
else:
print " [QUIT]"
sys.exit()

os.makedirs(d)
setattr(namespace, self.dest, d)

def is_dir(dirname):
if not os.path.isdir(dirname):

msg = "{0} is not a directory".format(dirname)
raise argparse.ArgumentTypeError(msg)
else:

return dirname

def is_file(filename):
if not os.path.isfile:

msg = "{0} is not a file".format(filename)
raise argparse.ArgumentTypeError(msg)
else:

return filename

def get_name(header, splitchar = "_", items = 2):

"""yse own function vs. import from match_contigs_to_probes - we don't want lowercase

if splitchar:
return "_".join(header.split(splitchar) [:items]).lstrip('>")

else:
return header.lstrip('>"')

