
Programs, Variables &
Expressions

Programming (for biologists)

BIOL 7800

Operators
In python, these are the common (arithmetic) operators

+ - * / // %
addition

subtraction
multiplication

division
integer div.

modulus

**
exponent

Order of Operations
PEMDAS

Parentheses are executed first

Exponents are executed second

Mutiplication and Division are executed third
Addition and Subtraction are executed fourth

Operators with the same precedence are run from
left to right

Assignment statements
equals vs. equals-equals

= ==vs.

Assignment
"set variable to something"

e.g. x = 5

Equivalence
"this is equal to that"

e.g.
if x == 5:
 do something

Variable naming
Variable names are typically lowercase, descriptive, and

separated by underscores
(spaces are not allowed)

my_variable_name = 10

In other languages, variables are often "camel-cased" AKA
CapWords

MyVariableName = 10

(This naming scheme is suggested for python classes)

Values and types

Very high-level language
dynamically typed

object-oriented, interpreted, garbage-collected language
Python is an

Values and types
But, just because Python is dynamically typed

does not mean variables don't have a type

type() function

type(100) type(2.6) type("cat")

Out[3]: int Out[4]: float Out[5]: str

What about:
type("2.6")

??

Expressions v. Statements
Just some programming nomenclature...

expressions are combinations of
values, variables, and operators

statements are "units of code"
that have some effect

n = 12
n + 24 * 36

print("dog")
type(2.6)

String Operations
Can you add a string?

"brrrrrp" "is a" "onomatopoeia"

Why, yes, you can!

"brrrrrp" "is a" "onomatopoeia"+ +

"brrrrrpis aonomatopoeia"

This is known as "string concatenation"

String Operations
But what about multiplication?

"brrrrrp" * 10

Out[6]: 'brrrrrpbrrrrrpbrrrrrpbrrrrrpbrrrrrpbrrrrrpbrrrrrpbrrrrrpbrrrrrpbrrrrrp'

Comments
There are several kinds of comments you will see in

Python programs

standard comment above something
followed by the something you are commenting

Comments
There are several kinds of comments you will see in

Python programs

code you are commenting # followed by a comment

(these are called "in-line" comments)

Comments
There are several kinds of comments you will see in

Python programs

'''
here is a giant block of code
that you would like to make
a giant comment about.

This is also used for preambles,
license info, novels, etc.
'''

(these are called "block" comments)

Comments
Generally, comments should be informative and document

non-obvious parts of the code

set variable dogs to "stinky"
dogs = "stinky"

get values 0 to 50 by 5
[elem for elem in range(0,51) if elem % 5 == 1]

This is redundant

This is better, but still somewhat redundant

Debugging
We will get to "fancy" debugging, but one of the first

debugging "tools" to use is the print() function

for number in range(0, 100):
if number % 5 == 0:

my_special_function(number)

Debugging
We will get to "fancy" debugging, but one of the first

debugging "tools" to use is the print() function

for number in range(0, 100):
if number % 5 == 0:

print(number)
my_special_function(number)

Debugging
We will get to "fancy" debugging, but one of the first

debugging "tools" to use is the print() function

for number in range(0, 100):
if number % 5 == 0:

my_special_function(number)
else:

print(number)

Programs
How to run them

Programs
How to run them

including %run magic method

Programs
How to run them

Programs
How to structure them

"hash bang"

description

actual program

Programs
How to structure them

function

"ifmain" stmnt

Programs
How not to structure them

You do not want
 GIANT, monolithic

functions

You want small, atomic
functions.

Programs
How to structure them

