Conditionals &
Recursion

Programming (for biologists)

BIOL 7800

Functions

example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example.py °

example.py

7 Created by Brant Faircloth on 27 Jan 2016}
Copyright 2016 Brant C. Faircloth. All rights reserved.

def functionl():
print("BIOL 7800")

def main():
functionl()

if _name__ == '_main__"':
main()

File 0 example.py* 7:42 LF UTF-8 Python

Anatomy of a Function

the function name

(R

©® = example.py — /Users/bcf/Dropbox (faircloth-lab)/Clas

example.py e

def an argument (optional)
S | (passed to function)

def fname(arg):
""mfunction description""" +——— a description

(can access)
pass fname. doc__

7

pbasically means skip

fxn for now.
(this is where your code will go)

Anatomy of a Function

Arguments can also have default values
that can be overridden

@® = example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example.py .

def fname(argl="rabbits"):
"""function description"""

print(argl)
print("are")
print("better")

fname ("scorpions”) === \\/@'’re overriding the default

File O example.py* 1:1 LF UTF-8 Python

Anatomy of a Function

Functions can return values (but don’'t have to)

@® = example.py — /Users/bcf/Dropbox (fai

example.py

def fname(argl):

"""function description

8 print(argl + arglﬂ
fname(2)
File O example.py* 8:23
‘void” functions
(do not return a value)

@® = example.py — /Users/bcf/Dropbox (fair

example.py ®

def fname(argl):
6 """function description"""

result = argl + argl
return result

from_fname_function = fname(2)

File O example.py* 6:31

“fruitful” functions

(return a value)

“slobal” and “local” refer to
Variable Scope

® ® H example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example.py e

But, if you use them,
ARGL = "hot dogs" e the convention Is
e to CAP their names

"""function description"""

print("are")

print ("better") That way, you know
they are global

fname()

16 |

File 1 example.py* 16:1 LF UTF-8 Python

Variable Scope

main () function helps ensure variables are “encapsulated”

® ® ® example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

“ example.py

All variables here are
encapsulated, thus “local”

def fname(argl):
"""function description™""

print(argl)
print("are")

P They can't easily to
other, unintended functions

def main():
varl = "hot dogs"
fname(varl)

if _name___ == '__main__':
18 main()

File 0 example.py* 18:8 (1, 6) LF UTF-8 Python

Flow of Execution

@® = example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example.py ®

Created on Tue Jan 26 12:41:32 2016

@author: Marco What is the
flow of execution
| here?
def main():

def get_numbers():

print([elem for elem in range(®, 51, 5)1)
return get_numbers()

if __name__ == '__main__
main()
18

File 0 No Issues example.py* 18:1 LF UTF-8 Python

Flow of Execution

What if | want to control the flow of execution?”

® O, example2.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example2.py .

def function2(number):
pass

def functionl(number):

pass
def main():
14 pass
if _name__ == '_main__':
main()

File 0 example2.py* 14:9 LF UTF-8 Python [1 update

Flow of Execution

What if | want to control the flow of execution?”

® @® example2.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example2.py .

def function2(number):
pass

def functionl(number):
pass

def main():
o functionl(_n_q[—np?_r:) _
e function2(_n_qr_n_t§<_e_r_) _

if _name__ == '__main__
20 main()

onditionals

They alter the order of execution or the “flow” of a program

. O example2.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

l example2.py .

def function2(number):
pass

def functionl(number):
pass

def main():

= if somethlng is True:

else:

20

Conditionals

They alter the order of execution or the “flow” of a program

Conditionals (or conditional expressions) are statements that
allow us to check certain conditions and alter the flow of
a program based on the result.

Because they alter the flow of execution, conditionals are one
type of flow control statement.

Anatomy of a conditional

The simplest conditional statement is “if”

/ the “condition”

<something>:
<the thing to do>

|

what we want to do,
If the condition is met

Anatomy of a conditional
/ the "condition”

<something>:

The condition is usually a boolean or a boolean test,
meaning that its result evaluates to True/

Boolean expressions

An expression that is either True or

5§==8
True
True and are special values with a type of ‘bool’
type(True) type()

<class 'bool™> <class 'bool>

Boolean expressions

An expression that is either True or

Often use relational operators

X=y Xx!=y x<y X>y X>=Yy

(there is no such relational operator as =< or =>)

Anatomy of a conditional

the “condition”

/

1

|

what we want to do,
If the condition is met

X<8:
X=X+

Anatomy of a conditional

What if we want to test two conditions?

/ the “condition”

<something> and <something else>:
<the thing to do>

|

what we want to do,
if the condition is met

Anatomy of a conditional

What if we want to test two conditions”
We use a “logical operator”

logical operator

condition #1 l condition #2

v v
<something> and <something else>:
<the thing to do>

|

what we want to do,
If the condition is met

Logical operators

and or not
True only if True if Negates an
both conditions one or the other expression
are met condition
IS met

XxX<Sandy<$95 X<8o0ory<~> notx<3§

Anatomy of a conditional

logical operator

L

X<8andy<8:
X=X+Yy

|

what we want to do,
If the condition s met

the “condition”

Logical operators

The curious case of NOT
not is often used in conjunction with the is keyword

X is not 5:
<do something>

not is also used in conjunction with the in keyword

X =09
xnotin [1,2,3,4]:
<do something>

Anatomy of a conditional

else...
‘alternative execution”

the boolean is met, do something; else, do something different

Xx<Sandy<3S: €—— Do one thing
X=X+ \'4

else: <4 [)0 another thing
X=X-YV

Anatomy of a conditional

else...
‘alternative execution”

the boolean is met, do something; else, do something different

x<dandy<3S: €«—— Do one thing
X=X+Yy

else: e
X=X-Y

But what if we have
more conditions?

Anatomy of a conditional

elif... else...
‘chained conditionals”

the boolean is met, do something; else, do something different
x<S5andy<5: <«——— Do one thing

X=X+ \'4
elif : ¢— Do another thing
elne: | If none of those,

X=X-y do a third thing

Anatomy of a conditional

elif... else...
‘chained conditionals”

XxX<8and y<8S:

X=X+y Can chain as many
elif e as needed...
elif

But, (!!) that doesn't
elif mean you should.
else:

X=X-y

Anatomy of a conditional

‘nested conditionals”

X<Sandy<85:

do_something_1 () Can nest as many
if . levels as needed...
do_something_ = ()
else: |
do_something 30 But, (!!) that doesn't
else: mean you should.

do_something 4

Anatomy of a conditional

Logical operators can simplity nested conditionals

O <x:
if x < 10:
print('x is a positive single-digit number.")

Versus

O<xandx<10:
print('x is a positive single-digit number.")

Anatomy of a conditional

Logical operators can simplity nested conditionals

...and parentheses can clarity meaning.

(O<x)and (x< 10):
print('x is a positive single-digit number.")

Recursion

As you've seen, functions can call other functions...

example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example.py ®

example.py

7 Created by Brant Faircloth on 27 Jan 2016}
Copyright 2016 Brant C. Faircloth. All rights reserved.

def functionl():
print("BIOL 7800")

def main():
functionl()

if _name__ == '_main__"':
main()

File O example.py* 7:42 LF UTF-8 Python

Recursion

But functions can also call themselves...

example2.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example2.py

def appreciate(varl):
if varl <= 8:

7 print(str(varl) + '
varl = varl + 2
appreciate(varil)

else:
print(": Who do we appreciate?")

|’ end:ll)

def main():
appreciate(2)
if _name__ == '__main__"':

main()

Recursion

Recursion is powerful, but also tricky...

my_function()

|

“Infinite recursion’

To avoid infinite recursion, you need to define some base case
that will eventually be met (or your program will run forever!)

User mput

We'll cover several methods of gatheing of user input during
the course... the first being so called “raw” input

Usually, we ask some question, then prompt for input...

print(“How much wood could a woodchuck chuck®”)
wood = input()

User mput

We can combine the two to make a cleaner interface

question = “How much wood could a woodchuck chuck? ”
wood = input(question)

What do you think is the * " of the response we receive”

