
Conditionals &
Recursion

Programming (for biologists)

BIOL 7800

Functions

Anatomy of a Function

def

the function name

an argument (optional)
(passed to function)

a description
(can access)

fname.__doc__

basically means skip
fxn for now.

(this is where your code will go)

Anatomy of a Function
Arguments can also have default values

We’re overriding the default

that can be overridden

Anatomy of a Function
Functions can return values (but don’t have to)

“void” functions “fruitful” functions
(do not return a value) (return a value)

“global” and “local” refer to

But, if you use them,
the convention is

to CAP their names

That way, you know
they are global

Variable Scope

Variable Scope
main() function helps ensure variables are “encapsulated”

All variables here are
encapsulated, thus “local”

They can’t easily “leak” to
other, unintended functions

Flow of Execution

What is the
flow of execution

here?

Flow of Execution
What if I want to control the flow of execution?

Flow of Execution
What if I want to control the flow of execution?

Conditionals
They alter the order of execution or the “flow” of a program

Conditionals
They alter the order of execution or the “flow” of a program

Conditionals (or conditional expressions) are statements that
allow us to check certain conditions and alter the flow of

a program based on the result.

Because they alter the flow of execution, conditionals are one
type of flow control statement.

Anatomy of a conditional
The simplest conditional statement is “if”

if <something>:
 <the thing to do>

the “condition”if statement

what we want to do,
if the condition is met

Anatomy of a conditional
if <something>:
 <the thing to do>

the “condition”if statement

The condition is usually a boolean or a boolean test,
meaning that its result evaluates to True/False

An expression that is either True or False

Boolean expressions

5 == 5
True

True and False are special values with a type of ‘bool’

type(True)
<class 'bool'>

type(False)
<class 'bool'>

An expression that is either True or False

Boolean expressions

x == y

Often use relational operators

x != y x < y x > y x >= yx <= y

(there is no such relational operator as =< or =>)

if x < 5:
 x = x + 1

the “condition”if statement

what we want to do,
if the condition is met

Anatomy of a conditional

Anatomy of a conditional
What if we want to test two conditions?

if <something> and <something else>:
 <the thing to do>

the “condition”if statement

what we want to do,
if the condition is met

Anatomy of a conditional
What if we want to test two conditions?

if <something> and <something else>:
 <the thing to do>

condition #1if statement

what we want to do,
if the condition is met

condition #2

logical operator

We use a “logical operator”

Logical operators

and or not
True only if

both conditions
are met

True if
one or the other

condition
is met

Negates an
expression

x < 5 and y < 5 x < 5 or y < 5 not x < 5

if x < 5 and y < 5:
 x = x + y

the “condition”if statement

what we want to do,
if the condition is met

Anatomy of a conditional
logical operator

Logical operators
The curious case of not

not is often used in conjunction with the is keyword

if x is not 5:
 <do something>

x = 5
if x not in [1,2,3,4]:
 <do something>

not is also used in conjunction with the in keyword

Anatomy of a conditional
if… else…

“alternative execution”

if x < 5 and y < 5:
 x = x + y
else:
 x = x - y

Do one thing

Do another thing

if the boolean is met, do something; else, do something different

Anatomy of a conditional
if… else…

“alternative execution”

if x < 5 and y < 5:
 x = x + y
else:
 x = x - y

Do one thing

But what if we have
more conditions?

if the boolean is met, do something; else, do something different

Anatomy of a conditional
if… elif… else…
“chained conditionals”

if x < 5 and y < 5:
 x = x + y
elif x < 6 and y < 6:
 x = x * y
else:
 x = x - y

Do one thing
if the boolean is met, do something; else, do something different

Do another thing

If none of those,
do a third thing

Anatomy of a conditional
if… elif… else…
“chained conditionals”

if x < 5 and y < 5:
 x = x + y
elif x < 6 and y < 6:
 x = x * y
elif x < 7 and y < 7:
 x = x % y
elif x < 8 and y < 8:
 x = x // y
else:
 x = x - y

Can chain as many
as needed…

But, (!!) that doesn’t
mean you should.

Anatomy of a conditional
“nested conditionals”

if x < 5 and y < 5:
 do_something_1()
 if x < 2 and y < 2:
 do_something_2()
 else:
 do_something_3()
else:
 do_something_4()

Can nest as many
levels as needed…

But, (!!) that doesn’t
mean you should.

Anatomy of a conditional
Logical operators can simplify nested conditionals

if 0 < x:
 if x < 10:
 print('x is a positive single-digit number.')

if 0 < x and x < 10:
 print('x is a positive single-digit number.')

versus

Anatomy of a conditional
Logical operators can simplify nested conditionals

if (0 < x) and (x < 10):
 print('x is a positive single-digit number.')

…and parentheses can clarify meaning.

Recursion
As you’ve seen, functions can call other functions…

Recursion
But functions can also call themselves…

Recursion
Recursion is powerful, but also tricky…

def my_function():
 my_function()

“Infinite recursion”

To avoid infinite recursion, you need to define some base case
that will eventually be met (or your program will run forever!)

User input
We’ll cover several methods of gatheing of user input during

the course… the first being so called “raw” input

Usually, we ask some question, then prompt for input…

print(“How much wood could a woodchuck chuck?”)
wood = input()

User input
We can combine the two to make a cleaner interface

question = “How much wood could a woodchuck chuck? ”
wood = input(question)

What do you think is the “type” of the response we receive?

