Ilteration

Programming (for biologists)

BIOL 7800

18

File O

Functions

H example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example.py °

examp le.py

Created by Brant Faircloth on 3 February 2016

Copyright 2016 Brant C. Faircloth. All rights reserved.

def functionl(arg):
product = arg * arg
return product

def main():
functionlizh

if _name__ == '_main__"':
main()

sues example.py* 18:16

LF UTF-8 Python

Functions allows us to
divide our programs into
atomic parts that are
easier to understand,

, and use again.

What is computer programming?

Computer programming
(often shortened to programming’)
IS a process that leads from an original
formulation of a computing problem to
executable computer programs.

- Wikipedia

Providing a logical sequence of
arguments to a computer so that
it can perform a desired task

Ada Lovelace
_ BIOL7800 (1815 - 1852)

Many of our desired tasks are repefitive.

We have 1000 numbers, and we want to
do something with each of them

example7.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example7.py

def function_to_do_something(numbers):

for number in numbers:
o do_something_with_each_number

def main():
11 o numbers = range(0, 1000)
if _name__ == '_main__"':
main()

Many of our desired tasks are repetitive.

1. gunzip -c AR001_CATTCCT_L008_R1_001.fastg.gz | less -S (ssh)

d3KP75M1:611:C3NBEACXX:8:1101:2032:2202 1:N:0:CATTCC
GGCACCACCTTCAGTGCAGAGCTCAACGGATCCTCCAAGCCAAGGATGGAGATCACTGGTTTCGGGAGATTTGGACCCAAATCTGGTAGATCGGAAGAGC
+
CCCFFFFFHHHHHIIJJJJJ3FHIJJ333333333333313J31133333333333333313IHHHFFDCEDDDDDDDDDDDDDDEDDDDDEDDDDDDDDC
a3KP75M1:611:C3NBEACXX:8:1101:2239:2240 1:N:0:CATTCC

TCCTCAACAGCATGAGTCCTGTGTGGCCTTGCATTGTCATCCATAAAAACAAAGTCGGGACCAATGGCACCCCGGAAAAGACGCAAGTGGAGGAGGATAA
+
CCCFFFFFHHHHHIJJJ3JJJ133333323333333GIJ133333133333333IHIJIII1IIIHHHHHFFFFDDDBDDDDDDDDDDDCCDDDDDDDBCDD
a3KP75M1:611:C3NBEACXX:8:1101:2438:2029 1:N:0:CATTCC
TGTTNATTCTATGAGGTAGTTTTGTTTAAATCTTGATTACATTAATTGGAAACTAAATCGCTTCTCTCTTTAGCAGTATCGGATGTGTGTGTGTTCAGGA
+
CCCF#2ADHHHHHJJJFHIHIJIJJJJJ31333333313323333333332332323113133233333GIJIIIIIHHFHHHFFFDEEFDDDDDDCCDDDC
a3KP75M1:611:C3NBEACXX:8:1101:2335:2127 1:N:0:CATTCC

GTGTTAATAAACTAAATCTGTAGGTTGGATGCAATGAAAGGGTAGAATCGTGAGGAATTCTATGGACTAGACTTCCCATAGAGACGTTTTGAATGGTATC
+

B@@FDFFFHHHHHIJJJJJJJJJIIIIJHHGIJJJJIIIJI]; FFHIJJJHIIGHEIIJGHGIJICHIIGIIGIGGHHFD>CDEFCCDEBBBDCDCD@CA

a3KP75M1:611: C3NBEACXX:8:1101:2411:2147 1:N:0:CATTCC
ATAGGTAAATTATAAAAATGTTTATATTTTTCAGTAAGAAAGTTTCAGTTGCGGCCGGAAATAATCAAGAATGAATTCTAAGTAATTTGGTACTGAGAAA
cr

CCCFFDEFHHHHHIJJJJJJJJJJJJJJJJJJJJJJJJJJJJHIIIII]I]IIIII] example7.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp
3KP75M1:611: C3NBEACXX:8:1101:2316:2149 1:N:0:CATTCC
AAAGGAAGAAATAATAATAACCATATGGATAGAAAAAACAATTGTTGTTGTTGAGTGC example7.py o
+

CCCFFFFFHHHHHIJJJ333J3333333313333333333331333333333JJ31JHH]
3KP75M1:611:C3NBEACXX:8:1101:2282:2149 1:N:0:CATTCC

ATCAATGCGTCCTACCAGTCCTTTCATAAGGATCTGAGGCATGGACATTAACTAAGA!

oL

??=AADA?FCFFFGHBGIBHIIGIIIICEHG??FHB?FGCBGDDGCFBBBDFGFD@G: def function_to_do_something(numbers):

3KP75M1:611:C3NBEACXX:8:1101:2513:2168 1:N:0:CATTCC
TATTTCACATCTGGCTCCTATTTTTGACTTATTTTCCTCCTCATTAACTTTTCCTCGT

We have 30 M
sequences, and we want
to do something with
each of them

" . for sequence in list_of_sequences:

CCCFFFFFGHHHH1J333111333JI1331JJJ)JGGHIGEHEHIIIEHIJIIGEHG] . =i

1 ® do_something_with_each_sequence

def main():

© sequences = list_of_sequences

if __name__ == '_main__
main()
15

iteration | ito'raSHon|

lte rati(m (AKA “Toops)

the repetition of a process or utterance.

* repetition of a mathematical or computational procedure applied to the result of a previous
application, typically as a means of obtaining successively closer approximations to the
solution of a problem.

ORIGIN late Middle English: from Latin ¢teratio(n-), from the verb iterare (sce iterate) .

Provides the abllity to run a statement or a
block of statements repeatedly

(i.e., this includes functions)

x-dictionary:r:m_en_us1259347:com.apple.dictionary.NOAD

http:/www.whereswaldo.com/m/images/maps troy.jpg

Iteration

(you've seen it before - but where?)

http://www.whereswaldo.com/m/images/maps_troy.jpg

Ilteration

(by recursion)

andre_recursion.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

andre_recursion.py)

My recursive summing program

Created by Andre Moncrieff on 2 Feb 2016.

Copyright 2016 Andre E. Moncrieff. All rights reserved.
import sys

sys.setrecursionlimit(1100)

def recursion_sum(x):
Sums each integer from x down through zero.
This function is based on solution #2 on the following page:
http://www.python—-course.eu/python3_recursive functions.php

if x ==
return @
else:
return x + recursion_sum(x-1)

def main():
answer = recursion_sum(1000)
print(answer)

if _name__ == '__main__

32 mainiﬂ

File O N« s andre_recursion.py* 32:11 LF UTF-8 Python

lteratlon

(by recursion)

32

File 0

andre_recursion.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

andre_recursion.py o

My recursive summing program

Created by Andre Moncrieff on 2 Feb 2016.

Copyright 2016 Andre E. Moncrieff. All rights reserved.
import sys

sys.setrecursionlimit(1100)

def recursion_sum(x):
Sums each integer from x down through zero.
This function is based on solution #2 on the following page:
http://www.python—-course.eu/python3 recursive functions.php

if x == 0:
return @
else:
return x + recursion_sum(x-1)

(1000 + recursion_sum(999))
(999 + recursion_sum(998))
(998 + recursion_sum(997))
(997 + recursion_sum(996))
(996 + recursion_sum(995))

(1 + recursion_sum(0))

(0)

def main():
answer = recursion_sum(1000)
print(answer)

if __name__ == '__main__
mainiﬂ

andre_recursion.py* 32:11 LF UTF-8 Python

~ 500,000

def funcl(x=1000):

else:

Ilteration

3 Major Flavors

while

(rare)

def funcl(x=0):

recursion

(somewhat rare)

ifx==0: i=0
return O while i < 1000:
i+=1
return x + funcl(x-1) X+=1

return x

for

(common)

def funcl(x=0):
for iin range(0,1001):

X +=1
return x

Ilteration

3 Major Flavors

Focus on these

A
while for
(rare) (common)
def funcl(x=0): def funcl(x=0):
i=0 for iin range(0,1001):
while i < 1000: X +=1i
1+=1 return x

X+=1
return x

Ilteration

while

A while |oop Is (usually) conditional, running the
statements in the loop until it's condition is met

Anatomy of a while

A while |00op IS (usually) conditional, running the
statements in the loop until it's condition is met

while statement / the “condition”

N

while <condition>:
<the thing to do repeatedly>

|

what we want to keep doing,
if the condition is met

Anatomy of a while

A while |00op IS (usually) conditional, running the
statements in the loop until it's condition is met

while statement the “condition”
\ x=0 /
while x < 100:

X +=2 This will run continuously
print(x) until x >= 100

|

what we want to keep doing,
if the condition is met

Anatomy of a while

What’s wrong here?

while statement the “condition”
\ x=0 /
while x |=‘a’:
X +=2
print(x)

|

what we want to keep doing,
if the condition is met

}This will run continuously

Anatomy of a while

What’s wrong here?

while statement / the “condition”

\X=O

while xX |=4g’;

infinitely
X8 This wil At
print(x) IS will run eertirgousty

|

what we want to keep doing,
if the condition is met

Anatomy of a while

breaking out of a while |oop

while statement the “condition”
x=0 /
while x < 100:
if x ==49: But if x == 49, we'll break
break } out of the loop and return
to the program
else:

X += 2 This will run continuously
print(x) until x >= 100

Anatomy of a while

while can be used to keep a program running (forever)

while statement / the “condition”

while True:
<the thing to do repeatedly>

|

what we want to keep doing,
if the condition is met

Anatomy of a while

while can be used to keep a program running (forever)

while True:
response = input('> What is the velocity of an ' +
'unladen swallow?')
if 18.0 <= float(response) <= 14.0:
break
else:
print(response)

print('Correct!’)

Ilteration

3 Major Flavors

Focus on these

prmm

for

(common)

def funcl(x=0):
for iin range(0,1001):

X +=1
return x

Ilteration

for

A for loop traverses the values in an iterator / iterable,
running the statements in the loop across all values

So, what’s an
iterator / iterable ”

A variable (or object) that we can iterate over

AKA lots of things
(lists, strings, tuples, dictionaries, files, lines, etc.)

Anatomy of a for

for statement / the Iterator

N

for item in <iterator>:
<the thing to do with each item>

|

the thing we wish
to do with each item

Anatomy of a for

for statement / the iterator

N

for item in ‘doggie’:
print(item)

|

the thing we wish
to do with each item

Anatomy of a for

for statement / the iterator

N

fornin[l, 2, 3,4]:
print(n)

|

the thing we wish
to do with each item

Anatomy of a for

breaking out of a for loop

for statement / the iterator

N

fornin (1, 2, 3,4]:
ifn==23:
break
else:
print(n)

|

the thing we wish
to do with each item

Anatomy of a for

ending a for loop

When does a for loop finish?

execution of loop
for statement ends at end of

\ / iterator

fornin([l, 2, 3,4]:
print(n)

