
Iteration

Programming (for biologists)

BIOL 7800

Functions allows us to
divide our programs into

atomic parts that are
easier to understand,

debug, and use again.

Functions

Providing a logical sequence of
arguments to a computer so that

it can perform a desired task

What is computer programming?
Computer programming

(often shortened to `programming`)
is a process that leads from an original
formulation of a computing problem to

executable computer programs.

Ada Lovelace
(1815 - 1852)

- Wikipedia

- BIOL7800

Many of our desired tasks are repetitive.

We have 1000 numbers, and we want to
do something with each of them

Many of our desired tasks are repetitive.

We have 30 M
sequences, and we want

to do something with
each of them

Iteration
iteration |ˌitəˈrāSHən|

noun
the repetition of a process or utterance.

• repetition of a mathematical or computational procedure applied to the result of a previous
application, typically as a means of obtaining successively closer approximations to the
solution of a problem.

ORIGIN late Middle English: from Latin iteratio(n-), from the verb iterare (see iterate) .

Provides the ability to run a statement or a
block of statements repeatedly

(i.e., this includes functions)

(AKA “loops”)

x-dictionary:r:m_en_us1259347:com.apple.dictionary.NOAD

Iteration
(you’ve seen it before - but where?)

http://www.whereswaldo.com/m/images/maps_troy.jpg

http://www.whereswaldo.com/m/images/maps_troy.jpg

Iteration
(by recursion)

(1000 + recursion_sum(999))

(999 + recursion_sum(998))

(998 + recursion_sum(997))

(997 + recursion_sum(996))

(996 + recursion_sum(995))

(0)

(1 + recursion_sum(0))

…

+

500,000~

Iteration
(by recursion)

Iteration

recursion while for

def func1(x=1000):
 if x == 0:
 return 0
 else:
 return x + func1(x-1)

def func1(x=0):
 i = 0
 while i < 1000:
 i += 1
 x += i
 return x

def func1(x=0):
 for i in range(0,1001):
 x += i
 return x

3 Major Flavors

(somewhat rare) (rare) (common)

Iteration

recursion while for

def func1(x=1000):
 if x == 0:
 return 0
 else:
 return x + func1(x-1)

def func1(x=0):
 i = 0
 while i < 1000:
 i += 1
 x += i
 return x

def func1(x=0):
 for i in range(0,1001):
 x += i
 return x

3 Major Flavors

(somewhat rare) (rare) (common)
{Focus on these

Iteration
while

A while loop is (usually) conditional, running the
statements in the loop until it’s condition is met

Anatomy of a while
A while loop is (usually) conditional, running the
statements in the loop until it’s condition is met

while <condition>:
 <the thing to do repeatedly>

while statement the “condition”

what we want to keep doing,
if the condition is met

Anatomy of a while
A while loop is (usually) conditional, running the
statements in the loop until it’s condition is met

x= 0
while x < 100:
 x += 2
 print(x)

while statement the “condition”

what we want to keep doing,
if the condition is met

}This will run continuously
until x >= 100

Anatomy of a while

x= 0
while x != ‘a’:
 x += 2
 print(x)

while statement the “condition”

what we want to keep doing,
if the condition is met

}This will run continuously

What’s wrong here?

Anatomy of a while

x= 0
while x != ‘a’:
 x += 2
 print(x)

while statement the “condition”

what we want to keep doing,
if the condition is met

}This will run continuously

What’s wrong here?

infinitely
^

Anatomy of a while

x= 0
while x < 100:
 if x == 49:
 break
 else:
 x += 2
 print(x)

while statement the “condition”

} This will run continuously
until x >= 100

} But if x == 49, we’ll break
out of the loop and return

to the program

breaking out of a while loop

Anatomy of a while
while can be used to keep a program running (forever)

while True:
 <the thing to do repeatedly>

while statement the “condition”

what we want to keep doing,
if the condition is met

Anatomy of a while
while can be used to keep a program running (forever)

while True:
 response = input('> What is the velocity of an ' +
 'unladen swallow?')
 if 13.0 <= float(response) <= 14.0:
 break
 else:
 print(response)

print('Correct!')

Iteration

recursion while for

def func1(x=1000):
 if x == 0:
 return 0
 else:
 return x + func1(x-1)

def func1(x=0):
 i = 0
 while i < 1000:
 i += 1
 x += i
 return x

def func1(x=0):
 for i in range(0,1001):
 x += i
 return x

3 Major Flavors

(somewhat rare) (rare) (common)
{Focus on these

Iteration
for

A for loop traverses the values in an iterator / iterable,
running the statements in the loop across all values

iterator / iterable ?
So, what’s an

A variable (or object) that we can iterate over

AKA lots of things
(lists, strings, tuples, dictionaries, files, lines, etc.)

Anatomy of a for

for item in <iterator>:
 <the thing to do with each item>

for statement the iterator

the thing we wish
to do with each item

Anatomy of a for

for item in ‘doggie’:
 print(item)

for statement the iterator

the thing we wish
to do with each item

for n in [1, 2, 3, 4]:
 print(n)

for statement the iterator

the thing we wish
to do with each item

Anatomy of a for

for n in [1, 2, 3, 4]:
 if n == 2:
 break
 else:
 print(n)

for statement the iterator

the thing we wish
to do with each item

Anatomy of a for
breaking out of a for loop

for n in [1, 2, 3, 4]:
 print(n)

for statement
execution of loop
ends at end of
iterator

Anatomy of a for
ending a for loop

When does a for loop finish?

