
Strings and Lists

Programming (for biologists)

BIOL 7800

Strings
A string is a sequence of characters

‘Able was I ere I saw Elba’

‘1 2 3 4 5 6 7’

These are both “strings”

Strings
A string is a sequence of characters

Because a string is a sequence you can:

Iterate over the sequence

my_string = ‘Able was I ere I saw Elba’

In: for letter in my_string:
 print(letter)
Out: ‘A’
 ‘b’
 ‘l’
 ‘e’

Strings
A string is a sequence of characters

Because a string is a sequence you can:

Reverse the sequence

my_string = ‘Able was I ere I saw Elba’

In: print(my_string[::-1])
Out: ‘ablE was I ere I saw elbA’

Strings
A string is a sequence of characters

Because a string is a sequence you can:

Find the length of the sequence

my_string = ‘Able was I ere I saw Elba’

In: len(my_string)
Out: 25

Strings
A string is a sequence of characters

Because a string is a sequence you can:

Access elements of the sequence

my_string = ‘gorilla’

In: my_string[1]
Out: ‘o’

g o r i l l a
0 1 2 3 4 5 6
-7 -6 -5 -4 -3 -2 -1

Accessing an element

Strings
my_string = ‘gorilla’

Because a string is a sequence you can also  
slice the sequence

g o r i l l a

0 1 2 3 4 5 6
-7 -6 -5 -4 -3 -2 -1

7
-8

g o r i l l a
0 1 2 3 4 5 6
-7 -6 -5 -4 -3 -2 -1

Accessing an
element

Slicing a
sequence

Slicing goes from the mth character (inclusive)
to the nth character (not inclusive)

Think of slicing as operating on indices between letters

Strings

g o r i l l a

0 1 2 3 4 5 6
-7 -6 -5 -4 -3 -2 -1

7
-8

Slicing a
sequence

Slicing goes from the mth character (inclusive)
to the nth character (not inclusive)

Think of slicing as operating on indices between letters

In: my_string[1:5]
Out: ????

my_string =

In: my_string[-6:-2]
Out: ????

What do we get with:

Strings

g o r i l l a

0 1 2 3 4 5 6
-7 -6 -5 -4 -3 -2 -1

7
-8

Slicing a
sequence

Slicing goes from the mth character (inclusive)
to the nth character (not inclusive)

Think of slicing as operating on indices between letters

my_string =

In: my_string[-2:-6]
Out: ????

What do we get with:

In: my_string[::-2]
Out: ????

In: my_string[::-3]
Out: ????

Strings
Strings are immutable - meaning, we

cannot change them directly

my_string = ‘gorillas like bananas’

my_string[0:8]

What is:

Strings
Strings are immutable - meaning, we

cannot change them directly

my_string = ‘gorillas like bananas’

my_string[0:8] == ‘gorillas’

my_string[0:8] = ‘monkeys’

So,

Let’s just change that one word,

TypeError: 'str' object does not support item assignment

How might we change ‘gorillas’ to ‘monkeys’?

Strings
Strings are immutable - meaning, we

cannot change them directly

my_string = ‘gorillas like bananas’

How might we change ‘gorillas’ to ‘monkeys’?

my_new_string = ‘monkeys’ + my_string[8:]

Strings
We can do lots of stuff with strings….

We can count letters We can find words

Strings
But strings are also what are known as “objects”

And, as objects have their own “methods”

object - a defined class of a certain type

where methods are basically functions that operate
only on an object of the string class

Strings
But strings are also what are known as “objects”

And, as objects have their own “methods”

object - a defined class of a certain type

where methods are basically functions that operate
only on an object of the string class

my_string = ‘gorilla’

my_string.upper() = ‘GORILLA’

The .upper() method
We say we “invoke” upper() on my_string.

Strings
As objects, strings have lots of methods

How do we show the attributes of an object?

my_string = ‘gorilla’
dir(my_string)

(attributes of an object include the methods)

[…
‘capitalize’,
 'casefold',
 'center',
 'count',
 'encode',
 'endswith',
 'expandtabs',
 'find',
 ‘format',
…
]

Strings
We can do lots of stuff with strings….

We can count letters We can find words
my_string = ‘this is my string’

Strings
We can do lots of stuff with strings….

We can count letters We can find words
my_string = ‘this is my string’

In: my_string.count(‘i’)
Out: 3

In: my_string.find(‘my’) 
Out: 8

But, there are already methods to do the above…

Strings
We can do lots of stuff with strings….

my_string = ‘this is my string’

One of the most useful string methods is .split()

In: my_string.split(‘ ’)

There’s a space in here…

Out: [‘this', 'is', 'my', 'string']

Why would this be useful?

Strings

my_line_1 = ‘index,name,species,quantity’

Delimited files!

my_line_2 = ‘A2455,bob,canis,2’
my_line_3 = ‘A2456,steve,felis,1’

my_line_1.split(‘,’)

my_line_2.split(‘,’)

my_line_3.split(‘,’)

['index', 'name', 'species', 'quantity']

['A2455', 'bob', 'canis', '2']

['A2456', 'steve', 'felis', '1']

Why would this be useful?

Strings
We can do lots of stuff with strings….

my_string = ‘this is my string\n’

Another very useful string methods is .strip()

In: my_string.strip()
Out: ‘this is my string’

Removes newlines (of all types)

In: my_string.strip(‘ ’)
Out: ‘thisismystring’

Removes other chars
There’s a space in here…

Strings
We can test for “membership” in a string using in operator

my_string = ‘this is a good string’

In: ‘good’ in my_string
Out: True

And we can compare strings using == operator

In: my_string == ‘this is a good string’
Out: True
In: my_string == ‘dogs’
Out: False

Lists
In: my_string.split(‘ ’)

Out: [‘this', 'is', 'my', 'string']

List

Like a string, a list is also a sequence of values, but
values can be of any type (not just characters)

Anatomy of a List
[‘lists', 'are', 'pretty', 'cool']

Enclosed in square brackets

item
of a list

item
of a list

0 1 2 3

Indexes

my_list =

my_list[3] = ‘cool’
You can access an element

Anatomy of a List
[‘lists', 'are', 'pretty', 'cool']

Enclosed in square brackets

item
of a list

item
of a list

0 1 2 3 4

my_list[2:4] = ['pretty', 'cool']
You can slice a list

Note: this returns another list

Creating a List
my_list = []

Set a variable to opposing square brackets
to create empty list

my_list = [‘dog’, ‘cat’, ‘mouse’, ‘rat’]

Type in list entries between square brackets

my_list = list(‘dog’)
“listify” a string

['d', 'o', 'g']

Creating a List
Lists can also be “nested”

my_list = [[1,2,3], [‘cat’,‘dog’], [4.6]]

my_list[0] = [1,2,3]

my_list[0][0] = ??
What does this return?

And may contain different types

Lists are mutable
In: my_list = [‘dog’, ‘cat’, ‘mouse’, ‘rat’]
In: my_list[1] = ‘hamster’
In: print(my_list)
Out: [‘dog’, ‘hamster’, ‘mouse’, ‘rat’]

In: my_list.pop(2)
In: print(my_list)

Unlike strings, you can modify list elements

What does this print?

Lists are mutable
In: my_list = [‘dog’, ‘cat’, ‘mouse’, ‘rat’]
In: my_list[1] = ‘hamster’
In: print(my_list)
Out: [‘dog’, ‘hamster’, ‘mouse’, ‘rat’]

In: my_list.pop(2)
Out: ‘mouse'
In: print(my_list)
Out: [‘dog’, ‘hamster’, ‘rat’]

Unlike strings, you can modify list elements

What does this print?

List operations
You can add (concatenate) lists

You can multiply (repeat) lists

In: [‘a’,’b’,’c’] + [‘1’,’2’,‘3’]
Out: [‘a’,’b’,’c’, ’1’,‘2’,‘3’]

In: [‘a’] * 6
Out: [‘a’,‘a’,‘a’,‘a’,‘a’,‘a’]

Lists
Lists are also“objects”

And, as objects, lists have their own “methods”

object - a defined class of a certain type

where methods are basically functions that operate
only on an object of the string class

Creating a List
One of the most useful list method is .append()

In: my_list = []

In: my_list.append(‘dog’)
In: my_list
Out: [‘dog’]

In: my_list.append(‘cat’)
In: my_list
Out: [‘dog’, ‘cat’]

In: my_list.append(‘rat’)
In: my_list
Out: [‘dog’, ‘cat’, ‘rat’]

Creating a List
Another useful list method is .extend()

In: list_1 = [1, 2, 3]
In: list_2 = [4, 5, 6]
In: list_1.append(list_2)
Out: [1, 2, 3, [4, 5, 6]]

Not quite what we wanted…

In: list_1 = [1, 2, 3]
In: list_2 = [4, 5, 6]
In: list_1.extend(list_2)
Out: [1, 2, 3, 4, 5, 6]

Functions just like concatenation (+)

Sorting a List
Another useful list method is .sort()

In: list_1 = [‘z’, ‘b’, ‘a’, ‘n’, ‘m’]
In: list_1.sort()
In: print(list_1)
Out: [‘a’, ‘b’, ‘m’, ‘n’, ‘z’]

sort() does exactly what you think it will

Joining a List
Another useful list method is join()

In: list_1 = [‘z’, ‘b’, ‘a’, ‘n’, ‘m’]
In: ‘’.join(list_1)
Out: ‘zbanm’

In: ‘:’.join(list_1)
Out: 'z:b:a:n:m'

join() is the opposite of the string method split()
join() is also a string method

