Strings and Lists

Programming (for biologists)

BIOL 7800

Strings

A string Is a sequence of characters

‘Able was | ere | saw Elba’

|

These are both “strings”

l

1234567

Strings

A string is a sequence of characters
Because a string Is a seguence you can;

my_string = ‘Able was | ere | saw Elba’

lterate over the sequence

In: for letter in my_ string:
print (letter)
Out: ‘A’
"b’
‘1’
‘e7

Strings

A string Is a sequence of characters
Because a string Is a seguence you can;

my_string = ‘Able was | ere | saw Elba’

Reverse the sequence

In: print(my_string[::-1])
Out: ‘ablE was I ere I saw elbA’

Strings

A string Is a sequence of characters
Because a string Is a seguence you can;

my_string = ‘Able was | ere | saw Elba’

Find the length of the sequence

In: len(my_string)
Out: 25

Strings

A string Is a sequence of characters
Because a string Is a seguence you can;

my_string = ‘gorilla’

Access elements of the sequence

In: my string[1]
Out: ‘o’

Accessing an element

riiita
il
_5_4 _5 -2 _l

o+~ O

0
)2

Strings

Because a string Is a sequence you can also
slice the sequence

my_string = ‘gorilla’

Slicing goes from the mth character (inclusive)
to the nth character (not inclusive)

Think of slicing as operating on indices letters
Accessing an Slicing a
element seguence
1 83456 012345 6
6-5-4-3-%-1 8 -7-6 -5 -4-3 -2

H
o
.

I‘7
-1

Strings

Slicing goes from the mth character (inclusive)
to the nth character (not inclusive)

Think of slicing as operating on indices letters

Slicing a
sequence

my _string=:g . 0iriiililia
012534567
-8 -7 -6 -6 -4 -3 -8 -1
What do we get with:

In: my string[1:5] In: my_string[-6:-2]
Out: ???° Oout: ???°?

Ml
Slicing goes from the mth character (inclusive)
to the nth character (not inclusive)
Think of slicing as operating on indices letters

Slicing a
seguence

)] 6 7

-2 -1

01 2 34 5
8-7 -6 -5 -4 -3

What do we get with:

In: my string[-23:-6] In: my string[::-3]
Oout: ??9?? Oout: ??2??

Strings

Strings are immutable - meaning, we
cannot change them directly

my_string = ‘gorillas like bananas’

What Is:
my_string[0:8]

Strings

Strings are immutable - meaning, we
cannot change them directly

my_string = ‘gorillas like bananas’

SO,
my_string[0:8] == ¢‘gorillas’

Let’s just change that one word,
my_string[0:8] = ‘monkeys’

TypekError: 'str' object does not support item assignment

How might we change ‘gorillas’ to ‘'monkeys’™?

Strings

Strings are immutable - meaning, we
cannot change them directly

How might we change ‘gorillas’ to ‘'monkeys’™
my_string = ‘gorillas like bananas’

my_new_string = ‘monkeys’ + my_string[8:]

Strings

We can do lots of stuff with strings....

We can count letters We can find words

example8.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL...

example8.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL...

example8.py o example8.py o)
word = 'banana' def find(word, letter):
count = 0 index = 0
for letter in word: while index < len(word):
if letter == 'a': if word[index] == letter:
count = count + 1 return index
print(count) index = index + 1
7 | return False
38
File 0 . example8.py* 7:1 LF UTF-8 Python File 0 example8.py* 8:1 LF UTF-8 Python

Strings

But strings are also what are known as “objects’

object - a defined class of a certain type

And, as objects have their own “methods”

where methods are basically functions that operate
only on an object of the string class

Strings

my_string = ‘gorilla’

my_string.upper() = ‘GORILLA’

\ The .upper () method
We say we "Invoke” upper () on my_string.

Strings

As objects, strings have lots of methods

How do we show the attributes of an object?
(attributes of an object include the methods)

my_string = ‘gorilla’
dir (my_string)
Looc

‘capitalize’,
‘casefold’,
‘center’,
‘count’,
‘encode’,
'endswith',
‘expandtabs’,
'find',
‘format’,

]

Strings

We can do lots of stuff with strings....

my_string = 'this is my string
We can count letters We can find words

example8.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL...

example8.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL...

example8.py o example8.py o)
word = 'banana' def find(word, letter):
count = 0 index = 0
for letter in word: while index < len(word):
if letter == 'a': if word[index] == letter:
count = count + 1 return index
print(count) index = index + 1
7 | return False
38
File 0 . example8.py* 7:1 LF UTF-8 Python File 0 example8.py* 8:1 LF UTF-8 Python

Strings

We can do lots of stuff with strings....

my_string = 'this is my string

But, there are already methods to do the above...

In: my_ string.count(‘i’) In: my_ string.find (‘my?)
Out: 3 Out: 8

Strings

We can do lots of stuff with strings....
my_string = 'this is my string

One of the most useful string methods is .split ()

There's a space in here...

'
In: my_string.split (¢ ?)

Out: [‘this', 'is', 'my’, 'string']

Why would this be useful?

Strings

Why would this be useful?

Delimited files!

my_line_1 = 'Index,name,species,quantity’
my_line_2 = ‘A2455,bob,canis,2’
my_line_3 = ‘A2456,steve,felis,1’

my_line_1l.split(¢,’)
['indexX’, name', 'species’, 'quantity']
my_line_2.split (¢,”)
['AR455', 'bob', 'canis’, '2']

my_line_3.split (¢,’)
['AR456', 'steve’, 'felis’, '1']

Strings

We can do lots of stuff with strings....

my_string = ‘this is my string\n’

Another very useful string methods is .strip)

Removes newlines (of all types)
In: my_string.strip(
Out: this is my string’

There's a space in here...
Removes other chars /

In: my_string.strip(¢?)
Out: thisismystring

Strings

We can test for “membership” in a string using in operator
my_string = this is a good string’

In: ‘Sood’in my_string
Out: True

And we can compare strings using == operator

In: my_string == this Is a good string’
Out: True

In: my_string == 'dogs’
Out: False

Lists

In: my_string.split(¢?)
Out: [‘this', 'is', 'my’, 'string']

A

List

Like a string, a list is also a sequence of values, but
values can be of any type (not just characters)

Anatomy of a List

Enclosed in square brackets

, l
my _list = [‘listg’, 'are', 'pretty’, 'cool']
- item iitem

. of a list | of a Ilst
Indexes

You can access an element

my_list[3] = ¢‘cool’

Anatomy of a List

Enclosed in square brackets

, l

‘lists', 'are’, 'pretty’, 'cool']

bt

- jitem item!
. of alist ; of a list:

o 1 2 3 4

You can slice a list

my list[2:4] ;['pretty', 'cool']

Note: this returns another list

Creating a List

my_list = []

Set a variable to opposing square brackets
to create empty list

my _list = [‘dog’, ‘cat’, ‘mouse’, ‘rat’]

Type In list entries between square brackets

my list = list(‘dog’)
“listity™ a string

[, "o, 'g]

Creating a Llst

Lists can also be "neste
And may contain different types

my list=[[1,2,3], [‘cat’,'dog’], [4.6]]

my list[0] =[1,2,3]

What does this return?
my _list[0] [0] = ©?

Lists are mutable

Unlike strings, you can modity list elements

In: my_list =[‘dog’, ‘cat’, ‘mouse’, ‘rat’]
In: my list[1] = ‘hamster’

In: print(my_list)

Out: [‘dog’, ‘hamster’, ‘mouse’, ‘rat’]

In: my list.pop ()
In: print(my_list)

What does this print?

Lists are mutable

Unlike strings, you can modity list elements

In: my_list =[‘dog’, ‘cat’, ‘mouse’, ‘rat’]
In: my_list[1] = ‘hamster’

In: print(my_list)

Out: [‘dog’, ‘hamster’, ‘mouse’, ‘rat’]

In: my_list.pop ()

Out: ‘mouse’

In: print(my_list)

Out: [‘dog’, ‘hamster’, ‘rat’]
What does this print?

List operations

You can add (concatenate) lists

In: [‘a’7,, ,,,C,] + [‘1,,,2,,‘3,]
Out: [‘a,,7 7,?0,, ,17,‘27,‘3,]

You can multiply (repeat) lists

In: [‘a’] *6
Out: [ca7,ca,,ca,,ca,,ca,,ca7]

Lists

Lists are also"objects”
object - a defined class of a certain type

And, as objects, lists have their own “methods”

where methods are basically functions that operate
only on an object of the string class

Creating a List

One of the most useful list method is .append)

In: my list =[]

In: my list.append(‘dog’)
In: my_ list
Out: [‘dog’]

In: my_list.append(‘cat’)
In: my_list
Out: [‘dog’, ‘cat’]

In: my list.append(‘rat’)
In: my list
Out: [‘dog’, ‘cat’, ‘rat’]

Creating a List

Another useful list method is .extend)

In:list_1=[1, 2, 3]

In: list_2=[4, 5, 6]

In: list_l.append (list_2)
Out: [1, 2, 3, [4, 5, 6]]

Not quite what we wanted...

In:list_1=[1, 2, 3]
In: list_2=[4, 5, 6]
In: list_l.extend (list_2)
Out: [1, 2, 3, 4, 5,06]

Functions just like concatenation (+)

Sorting a List

Another useful list method is .soxrt ()
sort() does exactly what you think it will

In: list_1 = [‘z, ‘b’, ‘a’, ‘n’, ‘m’]
In: list_l.sort()

In: print(list_1)

Out: [¢a’, ‘b’, ‘m’, ‘n’, ‘z’]

Joming a List

Another useful list method is join ()

join() is the opposite of the string method split()
join() is also a string method

In: list_1 = [‘2, ‘D, ‘a’, ‘n’, ‘m’]
In: ¢.join(list_1)
Out: ‘zbanm’

In: ¢’.join(list_1)
Out: 'z:b:a:n:m’'

