Dictionaries and Tuples

Programming (for biologists)

BIOL 7800

Strings

A string Is a sequence of characters

‘Able was | ere | saw Elba’

|

These are both “strings”

l

1234567

Lists

In: my_string.split(¢?)
Out: [‘this', 'is', 'my’, 'string']

A

List

Like a string, a list is also a sequence of values, but
values can be of any type (not just characters)

Anatomy of a List

Enclosed in square brackets

, l
my _list = [‘listg’, 'are', 'pretty’, 'cool']
- item iitem

. of a list | of a Ilst
Indexes

You can access an element

my_list[3] = ¢‘cool’

Anatomy of a Dictionary

A dictionary is a mapping ot some
value(s) to a unigue key

Enclosed In braces

l l

my dict={1:" ', &: ‘cats’, 8: ‘mice’}

VoA

key:value Kkey:value

keys must be unigue!

Anatomy of a Dictionary

A dictionary is a mapping ot some
value(s) to a unigue key

A dictionary allows you to “look up™
values that go with keys!

my dict={1:" ', &: ‘cats’, 3: ‘mice’}
You can access an element
my_dict = ¢ ’

But the following does not work:
my_dict[0] = ’

Dicts are generalized lists

my_list = [dlcts a,re pretty cool]

A2

Indexes
In a list, the are defined for us by element number

my_dict ={0: ‘dicts’, 1: ‘are’, 2: ‘pretty’, 3: ‘cool’}

In a dict, we define the

Anatomy of a Dictionary

my_dict = {999: ‘dictg’, 72: ‘are’, 8: ‘pretty’, 63: ‘cool’}

In a dict, we define the
(they needn’t have any order)

my_dict = {‘wordl’: ‘dicts’, ‘word®’: ‘are’, ‘word3’: ‘pretty’}

In a dict, we define the
(and they don't need to be numbers)

Keys can be any unique object

Creating a Dictionary

my_pets = dict()
my_pets = {}

Add a key/value
In: my pets[‘dogs’]| =&
In: print(my_pets)
Out: {'dogs" 2}

Add several keys/values
In: my pets={‘dogs’: 2, ‘cats’:3, ‘hamsters’:1}
In: print(my_pets)
Out: {‘dogs’: 2, ‘cats’:3, ‘hamsters’:1}

Dictionary

my_pets = {‘dogs’: 2, ‘cats’:3, ‘hamsters’:1}

Access an clement
In: my_ pets[‘dogs’]
Out: 2

Change an element
In: my pets[‘dogs’] =18
In: my_ pets[‘dogs’’
Out: 12

an element
In: my pets[‘dogs’] +=1
In: my pets[‘dogs’]
Out: |5

Dictionary

my_pets = {‘dogs’: 2, ‘cats’:3, ‘hamsters’:1}

Delete an element
In: del my_pets[‘dogs’]
In: print(my_pets)
Out:{‘cats’:3, ‘hamsters’:1}

Dictionary

Dictionary keys must be unique
while values can be anything

Here, all values are the same
my_pets = {‘dogs’: 2, ‘cats’:2, ‘hamsters’:2}

Here, values have list type
my_pets = {‘dogs’:[‘scoobie’, ‘idiot’],
‘cats’:[‘stinker’, ‘sir poopsalot’]}

Here, values have multiple types

my_pets = {*dogs’:numpy.array([1,2,3]),
‘cats’: ‘Seq(‘ACGTGAGTCGTATA)}

Dictionary

Dictionary keys are also unordered
Meaning that you cannot assume they will:

(1) remain in the order you entered them
(2) follow any logical order

In: test_dict = {°A’: ‘best’, ‘B’: ‘good’, ‘C’: ‘okay’, ‘D’: ‘bad’}
In: print(test_dict)
Out: {‘B’: ‘good’,’'D’: ‘bad’, ‘C’: ‘okay’, ‘A’: ‘best’, }

Dictionary

In: my pets = {‘dogs’:[‘scoobie’, ‘idiot’],
‘cats’:[‘stinker’, ‘sir poopsalot’]}
In: len(my_pets)

What is the len of my_pets”

Dictionary

In: my_pets = {*dogs’:[‘scoobie’, ‘idiot’],
‘cats’:[‘stinker’, ‘sir poopsalot’]}

In: len(my_pets)

Out: 2

len gives the total count of key:value pairs in the dict

Dictionaries are iterable

In: my pets= {‘dogs’: 2, ‘cats’:2, ‘hamsters’.2)
In: foritem in my_pets:

print(item)
dogs

cats
hamsters \

But, standard iteration only returns their keys

Dictionaries are iterable

In: my pets= {‘dogs’: 2, ‘cats’:2, ‘hamsters’.2)
In: foritem in my_pets:
print(item, my_pets[item])
dogs 2
cats 2
hamsters &

To get the value associated with each key
we have to iterate over keys, and lookup each value

This is slow!

Dictionaries are iterable

In: my pets= {‘dogs’: 2, ‘cats’:2, ‘hamsters’.2)

In: for key, value in my_pets.items():
print(key, value)

dogs 2

cats 2

hamsters 2

We can use the .items() method of dictionaries
to iterate over all key:value pairs in the dictionary

This Is faster!

Dictionary methods

Get only the keys of a dictionary with .keys()

In: my pets={‘dogs’: 2, ‘cats’:2, ‘hamsters’.2)
In: my_pets.keys()
Out: dict_keys([‘dogs’, ‘cats’, ‘hamsters’])

Get only the values of a dictionary with .values()

In: my pets= {‘dogs’: 2, ‘cats’:2, ‘hamsters’:2)
In: my_pets.values()
Out: dict_values([?2, &, 2])

Tuple

In: my_tuple = (‘this’, 'is', 'my’, ‘tuple’)

A

Tuple

Like a list, a tuple Is a sequence of values.
Values can be of any type and values are immutable

Anatomy of a Tuple

Enclosed in parentheses (optional but common)

l l

my_tuple = (‘this’, ‘is’, ‘my’_, ‘tuple’)

tt

- jtem item!
of a list ¢ ofahst

S

\\T/

Indexes

You can access an element

my_tuple[1] =‘is’

Anatomy of a Tuple

This is also a tuple

Comma separated values (no parens)

l l

my_tuple = ‘this’, ‘is’, ‘my’, ‘tuple’

i

item iitem
. of a list i of a list

0 1.2 3

Creating a Tuple

my_tuple = ()
Set a variable to opposing parentheses
to create empty tuple

my_tuple = tupleO
Set a variable to tuple() type

my_tuple = (‘dog’, ‘cat’, ‘mouse’, ‘rat’)
ype in tuple entries between opposing parentheses

my_tuple = tuple(‘dog’) my_tuple = tuple([‘dog’, ‘cat’, ‘rat’])
“tuplity” a string “tuplity” a list

(‘dl, | l, ‘gl)

Creating a Tuple

This is not a tuple

my_not_a_tuple = (‘a’)

A single element must be followed by a comma

my_tuple = (‘a’,
olt
my_tuple =‘a’,

Tuples are immutable

Unlike lists, you modifty tuple elements

In: my_tuple = (‘dog’, ‘cat’, ‘mouse’, ‘rat’)

In: my tuple[l]="hamster’

Out: 'tuple' object does not support item
assignment

Tuples are immutable

Unlike lists, you modify list elements

But what about. ..

In: my_tuple=([1,2,3], [‘cat’,’dog’], [4.6])
In: my_tuple[1][0O] = ‘rabbit'
In: print(my_tuple)

Tuples are immutable

Unlike lists, you modify list elements

But what about. ..

In: my tuple=([1,2,3], [‘cat’,’”dog’], [4.G])
In: my_tuple[1][0O] = ‘rabbit'

In: print(my_tuple)

Out: ([1,2,3], [‘rabbit’,‘'dog’], [4.6])

|

How ??

Tuple operations

You can add (concatenate) tuples

In: (‘a,, 4 ,, 407) + (‘1?, ‘2,, ‘8,)
Out: (‘a?, (4 7, 407, ‘1,, ‘2,, ‘5,)

You can multiply (repeat) tuples

In: (‘a’,) *6
Out: (‘&’,,&,,,a,,‘a,,‘a,,,‘a;,)

But, tuples have many fewer attributes/methods
[sO no .append() or .extend()]

Tuples & Functions

H example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example.py ®

def functionl(arg):
product = arg x arg

7 return product ~ <4———return product

Typically, functions
return one value

def main():
result = functionl(2)
print result

if _ name__ == '_main__':
main()

File 0 example.py* 7:5 LF UTF-8 Python

Tuples & Functions

® example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example.py

def functionl(arg):
product = arg *x arg

return arg, product, arg <4——— yreturn arg, product, arg

But, functions

def main():

result = function1(2) can rEBtLJrr} maore
= Ll than one value
In form of a tuple
if _name__ == '_main__':
main()

S0, what does this print?

File 0 example.py 12:18 LF UTF-8 Python [T 1 update

Tuples & Functions

® example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example.py

def functionl(arg):
product = arg *x arg

return arg, product, arg <4——— yreturn arg, product, arg

But, functions

def main():
result = function1(2) can rEBtLJrr} maore
= Ll than one value
In form of a tuple
if _name__ == '_main__':

main() (2, 9 2)

File 0 example.py 12:18 LF UTF-8 Python [T 1 update

Tuples & Functions

m example.py — /Users/bcf/Dropbox (faircloth-lab)/Classes/BIOL7800/temp

example.py

return arg, product, arg

def functionl(arg):
product = arg * arg

return arg, product, arg We can "unpack” those

/ three return values
def main(): Into 3 variables

r_argl, product, r_arg2 = functionl1(2)
print("This is 1st pos", r_argl)
print("This is 2nd pos", product)
print("This is 3rd pos", r_arg2)

if _name___ == '__main__':
18 main()

File 0 example.py 18:11 LF UTF-8 Python [T 1 update

zip() and Tuples

zip() Is a that joins two sequences to make one tuple
the resulting tuple has one element from each sequence

In: jackson =‘abc’

In: five="123

In: print(list(zip(jackson, five)))
Out: [('a','l), ('b', '], ('¢','3")]

zip() and Tuples

zip() Is a that joins two sequences to make one tuple
and can also be used to quickly make a dictionary

In: jackson =‘abc’

In: five="128’

In: my_dict = dict(zip(jackson, five))
In: print(my_dict)

Out: {'a"'l', 0" '], 'c":'3'}

