
Dictionaries and Tuples

Programming (for biologists)

BIOL 7800

Strings
A string is a sequence of characters

‘Able was I ere I saw Elba’

‘1 2 3 4 5 6 7’

These are both “strings”

Lists
In: my_string.split(‘ ’)

Out: [‘this', 'is', 'my', 'string']

List

Like a string, a list is also a sequence of values, but
values can be of any type (not just characters)

Anatomy of a List
[‘lists', 'are', 'pretty', 'cool']

Enclosed in square brackets

item
of a list

item
of a list

0 1 2 3

Indexes

my_list =

my_list[3] = ‘cool’
You can access an element

Anatomy of a Dictionary

{1: ‘dogs’, 2: ‘cats’, 3: ‘mice’}

Enclosed in squiggely braces

my_dict =

A dictionary is a mapping of some
value(s) to a unique key

key:value key:value key:value

keys must be unique!

Anatomy of a Dictionary

{1: ‘dogs’, 2: ‘cats’, 3: ‘mice’}my_dict =

my_dict[1] = ‘dogs’
You can access an element

A dictionary is a mapping of some
value(s) to a unique key

my_dict[0] = ‘dogs’
But the following does not work:

A dictionary allows you to “look up”
values that go with keys!

[‘dicts', 'are', 'pretty', 'cool']
0 1 2 3

Indexes

my_list =

{0: ‘dicts’, 1: ‘are’, 2: ‘pretty’, 3: ‘cool’}my_dict =

Dicts are generalized lists

In a list, the indexes are defined for us by element number

In a dict, we define the indexes

{999: ‘dicts’, 72: ‘are’, 2: ‘pretty’, 63: ‘cool’}my_dict =

In a dict, we define the indexes (called “keys”)
(they needn’t have any order)

{‘word1’: ‘dicts’, ‘word2’: ‘are’, ‘word3’: ‘pretty’}my_dict =

In a dict, we define the keys
(and they don’t need to be numbers)

Keys can be any unique object

Anatomy of a Dictionary

Creating a Dictionary
my_pets = {}
my_pets = dict()

In: my_pets[‘dogs’] = 2
In: print(my_pets)
Out: {'dogs': 2}

Add a key/value

In: my_pets = {‘dogs’: 2, ‘cats’:3, ‘hamsters’:1}
In: print(my_pets)
Out: {‘dogs’: 2, ‘cats’:3, ‘hamsters’:1}

Add several keys/values

Dictionary
{‘dogs’: 2, ‘cats’:3, ‘hamsters’:1}my_pets =

In: my_pets[‘dogs’]
Out: 2

Access an element

In: my_pets[‘dogs’] = 12
In: my_pets[‘dogs’]
Out: 12

Change an element

In: my_pets[‘dogs’] += 1
In: my_pets[‘dogs’]
Out: 13

Increment an element

Dictionary
{‘dogs’: 2, ‘cats’:3, ‘hamsters’:1}my_pets =

Delete an element
In: del my_pets[‘dogs’]
In: print(my_pets)
Out:{‘cats’:3, ‘hamsters’:1}

Dictionary
Dictionary keys must be unique
while values can be anything

{‘dogs’: 2, ‘cats’:2, ‘hamsters’:2}my_pets =
Here, all values are the same

{‘dogs’:[‘scoobie’, ‘idiot’],
 ‘cats’:[‘stinker’, ‘sir poopsalot’]}

my_pets =
Here, values have list type

{‘dogs’:numpy.array([1,2,3]),
 ‘cats’: ‘Seq(‘ACGTGAGTCGTATA’)}

my_pets =
Here, values have multiple types

Dictionary
Dictionary keys are also unordered

In: test_dict = {‘A’: ‘best’, ‘B’: ‘good’, ‘C’: ‘okay’, ‘D’: ‘bad’}
In: print(test_dict)
Out: {‘B’: ‘good’,‘D’: ‘bad’, ‘C’: ‘okay’, ‘A’: ‘best’, }

Meaning that you cannot assume they will:

(1) remain in the order you entered them
(2) follow any logical order

Dictionary
In: my_pets = {‘dogs’:[‘scoobie’, ‘idiot’],
 ‘cats’:[‘stinker’, ‘sir poopsalot’]}
In: len(my_pets)

What is the len of my_pets?

Dictionary
In: my_pets = {‘dogs’:[‘scoobie’, ‘idiot’],
 ‘cats’:[‘stinker’, ‘sir poopsalot’]}
In: len(my_pets)
Out: 2

len gives the total count of key:value pairs in the dict

Dictionaries are iterable
In: my_pets = {‘dogs’: 2, ‘cats’:2, ‘hamsters’:2}
In: for item in my_pets:
 print(item)
dogs
cats
hamsters

But, standard iteration only returns their keys

Dictionaries are iterable
In: my_pets = {‘dogs’: 2, ‘cats’:2, ‘hamsters’:2}
In: for item in my_pets:
 print(item, my_pets[item])
dogs 2
cats 2
hamsters 2

To get the value associated with each key
we have to iterate over keys, and lookup each value

This is slow!

Dictionaries are iterable
In: my_pets = {‘dogs’: 2, ‘cats’:2, ‘hamsters’:2}
In: for key, value in my_pets.items():
 print(key, value)
dogs 2
cats 2
hamsters 2

We can use the .items() method of dictionaries
to iterate over all key:value pairs in the dictionary

This is faster!

Dictionary methods
In: my_pets = {‘dogs’: 2, ‘cats’:2, ‘hamsters’:2}
In: my_pets.keys()
Out: dict_keys([‘dogs’, ‘cats’, ‘hamsters’])

In: my_pets = {‘dogs’: 2, ‘cats’:2, ‘hamsters’:2}
In: my_pets.values()
Out: dict_values([2, 2, 2])

Get only the keys of a dictionary with .keys()

Get only the values of a dictionary with .values()

Tuple
In: my_tuple = (‘this’, 'is', 'my', ‘tuple’)

Tuple

Like a list, a tuple is a sequence of values.
Values can be of any type and values are immutable

Anatomy of a Tuple
(‘this’, ‘is’, ‘my’, ‘tuple’)

Enclosed in parentheses (optional but common)

item
of a list

item
of a list

0 1 2 3

Indexes

my_tuple =

my_tuple[1] = ‘is’
You can access an element

Anatomy of a Tuple

‘this’, ‘is’, ‘my’, ‘tuple’

Comma separated values (no parens)

item
of a list

item
of a list

0 1 2 3

my_tuple =

This is also a tuple

Creating a Tuple
my_tuple = ()

Set a variable to opposing parentheses
to create empty tuple

my_tuple = (‘dog’, ‘cat’, ‘mouse’, ‘rat’)
Type in tuple entries between opposing parentheses

my_tuple = tuple(‘dog’)
“tuplify” a string

 my_tuple = tuple()
Set a variable to tuple() type

my_tuple = tuple([‘dog’, ‘cat’, ‘rat’])
“tuplify” a list

(‘d', 'o', ‘g')

Creating a Tuple
my_not_a_tuple = (‘a’)

This is not a tuple

my_tuple = (‘a’,)

A single element must be followed by a comma

my_tuple =‘a’,
or

Tuples are immutable
In: my_tuple = (‘dog’, ‘cat’, ‘mouse’, ‘rat’)
In: my_tuple[1] = ‘hamster’
Out: TypeError: 'tuple' object does not support item
assignment

Unlike lists, you cannot modify tuple elements

Tuples are immutable
Unlike lists, you cannot modify list elements

But what about…

In: my_tuple = ([1,2,3], [‘cat’,‘dog’], [4.6])
In: my_tuple[1][0] = ‘rabbit'
In: print(my_tuple)

Tuples are immutable
Unlike lists, you cannot modify list elements

But what about…
In: my_tuple = ([1,2,3], [‘cat’,‘dog’], [4.6])
In: my_tuple[1][0] = ‘rabbit'
In: print(my_tuple)
Out: ([1,2,3], [‘rabbit’,‘dog’], [4.6])

How ??

Tuple operations
You can add (concatenate) tuples

In: (‘a’, ‘b’, ‘c’) + (‘1’, ‘2’, ‘3’)
Out: (‘a’, ‘b’, ‘c’, ‘1’, ‘2’, ‘3’)

But, tuples have many fewer attributes/methods
[so no .append() or .extend()]

You can multiply (repeat) tuples

In: (‘a’,) * 6
Out: (‘a’,’a’,’a’,‘a’,‘a’,‘a’)

Tuples & Functions

return product
Typically, functions

return one value

Tuples & Functions

return arg, product, arg

But, functions
can return more
than one value

in form of a tuple

So, what does this print?

Tuples & Functions

return arg, product, arg

But, functions
can return more
than one value

in form of a tuple
(2, 4, 2)

Tuples & Functions

return arg, product, arg

We can “unpack” those
three return values

into 3 variables

zip() and Tuples
zip() is a function that joins two sequences to make one tuple

the resulting tuple has one element from each sequence

In: jackson = ‘abc’
In: five = ‘123’
In: print(list(zip(jackson, five)))
Out: [('a', '1'), ('b', '2'), ('c', '3')]

zip() and Tuples
zip() is a function that joins two sequences to make one tuple

and can also be used to quickly make a dictionary

In: jackson = ‘abc’
In: five = ‘123’
In: my_dict = dict(zip(jackson, five))
In: print(my_dict)
Out: {'a': '1', 'b': '2', 'c': '3'}

